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Preliminaries
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A Short Description of R

@ R is the language of choice for a large and growing proportion
of people developing new statistical algorithms

@ R is available under GNU General Public License for Windows,
Mac OS X, and Linux

@ R is extendable with user submitted packages

o The Comprehensive R Archive Network (CRAN) makes it easy
to benefit from others work, and share your own work and get
feedback for improvements

@ There are many user written packages available for the Design
and Analysis of Experiments

FTC Short Course - Design and Analysis of Experiments with R




Preliminaries
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Websites for Help Getting Started with R

o The R Project for Statistical Computing
https://www.r-project.org

@ Getting Started with R
http://data.princeton.edu/R/

@ A Short Tutorial
http://math.usask.ca/"longhai/doc/others/R-tutorial.pdf

@ An Introductory pdf Manual can be Obtained Here
https://cran.r-project.org/doc/manuals/R-intro.pdf

FTC Short Course - Design and Analysis of

Preliminaries
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Websites for Help Getting Started with R

o Installing and using R packages
http://math.usask.ca/"longhai/software/installrpkg.html

@ R Packages for Design an Analysis of Experiments

https://cran.r-project.org/web/views/
ExperimentalDesign.html
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Objects in R

During an R session R Creates Entities known as Objects
o Variables
@ Arrays of numbers
o Character strings
o Functions

o Data frames and other more complex elements built from
earlier components
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The R Console

L3 R - =mm

Command line

prompt >
Type commands
and see text results
immediately
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Program Interface

2 from The Boc

R R Console ==~

Expressions and

Assignments

Do calculations or
make assignments
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The R Script
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Roraphis: Device 2 (ACTVE)

FTC Short Course -



m Ints

ckages
e and Data from The Book

3 RGu (64-bit - oER

FTC Short Course - Design and Analysis of

B

Reomole

FTC Short Course - Design and Analysis of Experiments with R




2 from The B

Documentation for an R Package

Package Documents
Document functions
and data frames
available in the
package
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2 from The B

Documentation for a Function

fac.design

Function Document

fact.design function
in DoE.Base
Package

bloc
woreps=
Arguments

nlevels




Function Examples

Examples of
fact.design function
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e= full factorial
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User written R packages illustrated in the book

AlgDesign, agricolae
BsMD

car crossdes

daewr, DoE.base
effects

FrF2

GAD, gdata, gmodels
leaps, 1lme4
mixexp, multcomp
nlme

rsm
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Code and Data from The Book

Website for the book
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Code examples in the book

R Code Examples
Design and Analysis
of Experiments
with R

R Exsmplesfor Chaprer 3

Code and Data
Code: Web page
Data: daewr

package

R Examples for Clhapter 4
R Examples for Chapter §

R Exaples for Chapter 6
John Lawson R Exauples for Chapter
R Esssaples for Chapt 11

R Examples for Chapter 12

R Exssuples for Chinprer 13

e
Code and Data from The Book

R Code for Chapter 2

R Examp| r C
€ = € | @ hitps//jlawson byu.edu/REOOK/RCode/Chapter2.

r( rep (€35, 40, 45 ), each - 4))
Ce12)

(loaf = ey, tine - foc )
File e bt

2 Exarple 2 p. 23
Bread - resd.cov("Plan.cav’)

~ tine, data = brasd )




Part Il

A Context for Discussing Experimental
Designs
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Introduction

Strategy

Strategy for Experimentation

Present Goal
0% Knowledge 100%
Objective: Preliminary Screening  Effect Optimization  Mechanistic
xploration  Factors Estimation Modeling
No. of 5-20 3-6 2-4 1-5
Factors
Purpose:  Identify Identify Estimate Fit Empirical Estimate
Sources of Important ~ Factor Model Parameters
Variability Factors Effects + Interpolate of Theory

Interactions Extrapolate

R.D. Snee "Raise Your Batting Average” Quality Progress Dec.
2009

Preliminary Exploration
< Screening Factor
Strategy ¥ roat
imization
Sequential Experiment

Preliminary Exploration

@ Exploratory experiments to study repeatability of the process

o |dentify process steps causing majority of the variability in
results

o Identify factors that possibly affect the results
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ening Factors

Strategy

Screening

@ Explores a large number of factors

@ Objective is to identify smaller subset of most important
factors

o Fit linear models to the data

FTC Short Course - Design and Analysis of

Strategy

Effect Estimation

@ Explores the relationship between results and important
factors

@ Goal is to estimate linear effects and interactions and develop
a prediction model

@ Fit models including linear effects and interactions
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Strategy

Optimization

Optimization

@ Explores the relationship between results and a limited
number of quantitative leveled factors

o Goal is to identify optimum operating conditions within the
factor ranges studied

e Fit quadratic response surface models

FTC Short Course - Design and Analysis of

Strategy .
Optimization
Sequential Experimentation

Sequential Experimentation

@ Plan Ahead — decide on a series of experiments that may be
needed

o Consider All Possible Factors — majority of variation is caused
by a subset of factors, but which ones?

@ Don’t Spend All Resources on a Single Experiment
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Strategy

Sequential Experiment:

Possible Sequences

o Preliminary Exploration — Effect Estimation
@ Preliminary Exploration — Optimization

@ Screening — Effect Estimation — Optimization

FTC Short Course - Design and Analysis of Experiments with R

Part 111

Design and Analysis of Two-Level
Factorials

FTC Short Course - Design and Analysis of Experiments with R



Outline of Part Ill

© Design and Analysis of Two-Level Factorials
@ Two-Level Factorials
@ The Justification for Two-Levels
@ Creating and Analyzing Two-Level Factorials with R
@ Blocking Two-Level Factorials
@ Restrictions on Randomization - Split-Plot Designs

Why start discussion with two-level factorials?

Present

Goal

0%

Knowledge

100%

Objective: Preliminary
xploration

Scree
Factors

Effect
Estimation

Optimization

Mechanistic
Modeling

No. of
Factors
Purpose:  Identify

Sources of
Variability

5-20

Identify
Tmportant
Factors

3-6

Estimate
Factor
Effects +
Interactions

2-4

Fit Empirical
Model

Interpolate

1-5

Estimate
Parameters
of Theory
Extrapolate




Why start discussion with two-level factorials?

Screening Effect Optimization
Factors

Estimation

e @
©—
©
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Two-Level Factorials
Ju n

Screening Effect Optimization
Factors

Estimation

o0 O ©
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Relation between effect and regression coefficient

Figure 3.9 Effect and Regression Coefficient for Two-Level Factorial
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Definition of interaction effect

Figure 3.11 Definition of an Interaction Effect for Two-Level Factorial
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Design and Anal Level Factorials

Calculation of interaction effect

Figure 3.12 Geometric Representation of 2° Design and Interaction Effect
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Number of experiments

Number of Experiments Required for a Full-Factorial

Number of Levels
Number of Factors | 2 3 4
2 4 9 16
3 8 | 27 64
4 16 | 81 256
5 32 | 243 | 1024

FTC Short Course - Design and Analysis of Ex;

Choice of Levels

@ Factors with Qualitative Levels
e Factors with Quantitative Levels

@ ® ©




Level
g Two-Level Factorials with R

Creating a two-level factorial design with R FrF2

Problem 9 Chapter 3 of " Design and Analysis with R”

9. Nyberg (1999) has shown that silicon nitride (SiNx) grown by Plasma En-
hanced Chemical Vapor Deposition (PECVD) is a promising candidate for
an antireflection coating (ARC) on commercial crystalline silicon solar cells.
Silicon nitride was grown on polished (100)-oriented 4A silic
a parallel plate Plasma Technology PECVD reactor. The d
electrodes of the PECVD is 24 ¢cm and the diameter of the shower head
(through which the gases enter) is 2A. The RF frequency was 13.56 MIHz.
The thickness of the silicon nitride was one-quarter of the wavelength of
light in the nitride, the wavelength being 640 nm. This wavelength is e
pected to be close to optimal for silicon solar cell purposes. The pro

ummonia and a mixture of 3% silane in argon. The experiments

were carried out according to a 2° factorial design. The results are shown
in the table on the next page.
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Level
I Factorials Creating .md An;\/ ing Two-Level Factorials with R
Blocking ctorials

herons on Randon Split-Plot D

Creating a two-level factorial design with R FrF2

library(FrF2)
> Design.p9 <-FrF2(nruns=32, nfactors=s, i)locks 1, ncenter=0, replications=
+ randonize=FALSE, factor.nanes=1ist(Ratio=c(0.1,0.9),Gas flovc(i0,60),

+ Pressure=c(300,1200), Temperature=c(300, 450) 6(10,60))

creating full factorial with 32 runs .

> y1<-c(1.92,3.06,1.96,3.33,1.87,2.62,1.97,2.96,1.94,3.53,2.06,3.75,1.96,3.14,2.15,
+3.43,1.95,3.16,2.01,3.43,1.88,2.14,1.98,2.81,1.97,3.67,2.09,3.73,1.98,2.99,2.19,
+ 3.39)

> y2<-c(1.79,10.10,3.02,15.00,19.70,11.20,35.70,36.20,2.31,5.58,2.75,14.50,20.70,
+11.70,31.00,39.00,3.93,12.40,6.33,23.70,35.30,15.10,57.10,45.90,5.27,12.30,6. 3
+ 30.50,30.10,14.50,50.30,47.10)

> Design.p9 <- add.response(Design.p9, y1, replace=FALSE)

> Design.p9 <- add.response(Design.p9, y2, replace=FALSE)

Design and Anal

Design and Anal g Am,m evel Fa s with R
ing T
s on Rondor

Creating a two-level factorial design with

> print( Design.p9, std.order=TRUE:
fo.in.std.order run.no Ratio Gas_flon Pressure Tewperature Pover y1  y2
1 11 01 a0 300 300 10192 1.79
2 2 2 0 w0 3 300 10306 10,10
3 3 3 ooa o a0 00 1019 3
3 i1 oa o 00 10333 15.00
H ER o 1200 300 1017 19070
H 6 5 0o B 1200 50 102062 11
7 77 01 & 1200 300 10197 35.70
8 s 8 09 300 10 2.96 36.20
H 9 o o1 w0 a0 460 10104 231
10 0 1w o8 o a0 40 10353 558
1 uoou oo & a0 40 10208 275
12 2 12 o o 460 10375 14150
13 1 01 w0 1200 460 10196 20070
1 W w0 200 460 10314 1170
15 1015 01 o 1200 460 102015 3100
16 18 09 & 120 460 10343 39 00
7 v oo o Ao 300 0195 3.93
1 B 18 0 o 30 500 603016 12,40
19 019 01 o 30 300 60201 633
20 0 20 os o 30 300 60 3.43 23.70
2 2 2 01 w0 1200 300 60 188 35.30
2 2 2 os o 120 300 60214 15,10
50 % T os 12 460 602.99 14.50
3 s s o0 & 1200 do0 80210 0%
09 2 60 3.39 4

2 ] & 1200 47,10
BT cotumns run.no-in.std-order and run.no are aanotation. net part of he daia frane




I
Two-Level Factorials with R

Factor - +
A=Ambient temperature, °C 22 32
B=Voltmeter warmup time, minutes 0.5 5.0
C=Time power is connected, minutes 0.5 5.0
Y=measured voltage, millivolts

Design and Analysis of Exp

for Two-Level
Design and Anal Level Factorials  Creating and Analyzing Two-Level Factorials with R
locking Two-Le
tions on Randor 1 - Split-Plot D

Example analysis of a replicated 23 factorial

Table 3.6 Factor Settings and Response for Voltmeter Experiment
Joded Factors

Run C Xi Xp Xc Rep Order y
1 0.5 - - - 1 5
2 0.5 + - - 1 14
3 0.5 + 1 15
4 0.5 + + - 1 1
5 50 - - + 1 8
6 50+ - + 1 12
7 5.0 + 1 10
8 50+ + + 1 9
1 0.5 - - - 1 4
2 0.5 + - - 1 7
3 0.5 + 1 2
4 0.5 + + - 1 3
5 50 - - + 1 11
6 50+ - + 1 16
7 5.0 + 1 6
8 5.0 + + + 1 13




Level
I Factorials Creating .md An;\/ ing Two-Level Factorials with R
Blocking ctorials

herons on Randon Split-Plot D

Example analysis of a replicated 23 factorial

> library(daey
varning nessage:
package ‘daewr” was built under R version

volt is a data frame
in daewr package

Fiooainninnnnennnnno

ss(Volt:

Design and Anal evel Fa s with R
king T
e on R

Example analysis of a replicated 23 factorial

Code was cut and pasted from )
R examples for Chapter 2 > library(Frf2)
> modve-In(y - A*B*C. data=volt, contrast=list(Azcontr.Fr72,
tr.Fre2))

+ Becontr.FrF2,

Ietps: /7 hawson. byu. cAu/RB00K/ - Sy o
RExanples. html >

the statement  — Estinate Std. Error t value Pr(>It])

contrast=list(A=contr.FrF2, (Intercept) 668.5625  4.5178 147.985 4.86e-15 *~*
AL -16.8125 X 1721 0.00586 **
51 0.6375 0.208 0.84079

Converts actual factor levels for Astored 51 i 9-208 0.5a0re

as factors in data frame vol t to coded a1 66875 480 017707

factor level contrasts AL etc. This would ~ A1:C1 1205625 45178 2.781 0.02390 *

not be necessary if the design was BL:CL 1.8125  4.5178  0.401 0.69878
ALIBL:CL  -5.8125  4.5178 -1.287 0.23422

Created by R package FrF2

Signif. codes: 0 ***** 0.001 **+* 0.01 *** 0.05 *.* 0.1 *
The estimates

are the regression coe
% of the Effects

Residual standard error: 18.07 on 8 degrees of freedon
le R-squared: 0.772 Adjusted R-squared: 0.5724
3.869 on 7 and 8 OF, p-value: 0.0385
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Factorials d Two-Level Factorials with R

Example analysis of a replicated 23 factorial

" R e TV (=]

Le
Justification f

Design and Analy -Level Factorials nd Analyzi
; Le

Example analysis of a replicated 23 factorial

Since the design is orthogonal insignificant terms dropped without
refitting to get a prediction equation

y= 668.56_1648][Tem2—27j+6427(CWarm—2A75j(Temp—27)

225 5

FTC Short Course - Design and Analysis of Experiments with R



n for Two-L
nal

D Temperature of the Coated MixingT

Figure 3.14 Diagram of a Chemical Process
Product + Tars

- Design and Analysis of

Example analysis of an

R Rconsole =y

chem is a data
frame in daewr
package
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The Justification for Two-Level
sign and Analysis of Two-Le Creating and Analyzing Two-Level Factorials with R
cking Two-Level Factorial

trictions on Randomization - Split-Plot Desig

Example analysis of an unreplicated 2* design

> m04F <-1n( y - ABICHD, data = ches)
enary (100

Intorsuta

© * 0. data = chen)

Residuats:
ALL 16 residuals are 0: no resicual degrees of frasdont

Contricients

Estinate Sta. Error € value PrCIED)
Qntercepty 62.3125 e R
3 78125 Moow
c 011875 Moow
o 06a7s WMoow
53125 WMoow
I ola12s WMoow
o Exry WMoow
& 06875 Moow
& 2laa7s woow
a:cp -o.a375 [
Keico 0. WMoow

fesidual standard srror: N on O degrees of fresdom
ultiple R-squarcd: 1. . Adjusted Rsquarcd: Nk
Fstatistic: | NaN on 15 axd 0 OF,  povalus: NA

at I
Design and Analy nd Analyzing Two-Level Factorials with R
g Two-Level Fac
tions on Randor 1 - Split-Plot Desig

Example analysis of an unreplicated 2* design

> fullnornal (coef(nodf) [-11.alpha=. 025) > L6B( coef(nod[-11. rpt = FALSE)

Normal 0.0 Plot

[E——

' 0 ' 00 05 0 i 20

NommaiScaree Hat ol Scors




Two-Level
g Two-Level Factorials with R

> LenthPlot(modf, na

n = "Lenth Plot of Effects™)

Lenth Plot of Effects

ST [
< I e
-

rials with R

interaction.ploty
in = “Interaction Plo
Reactant A

8,
¢

® R e 50TV

Interaction Plotof Catalyst by Excess A

2 . 5 8= Catayst concentration

[




I
Two-Level Factorials with R

E=|| 2V |- XV, [g]

Xi=+} Xi=—1

Daniel (1960) proposed a manual method for detecting and correcting an
outlier or atypical value in an unreplicated 2* design. This method consists of
three steps. First, the presence of an outlier is detected by a gap in the center
of a normal plot of effects. Second, the outlier is identified by matching the
signs of the insignificant effects with the signs of the coded factor levels and
interactions of each observation. The third step is to estimate the magnitude
of the discrepancy and correc

the atypical value

Design and Analysis of Exp

for Two-Level
Design and Anal Factorials  Creating and Analyzing Two-Level Factorials with R
locking Two-Le
tions on Randor 1 - Split-Plot D

Example analysis of an

> data(8ox)

1-1-1-1-147.46
2 1-1-1-149.62

. 3 a2 11401

BoxM is a data 4 1 1-1-146.01
. 5 -1-1 1-151.47

frame in daewr 6 1-1 1-148.49
7 11 1-14903

package taken 8 11 1-146.10
9 -1-1-1 146176

from Box(1991) 10 1-1-1 14856
1w 10 14483

121 10 1aalas

13-1-1 1 15018

1411 1 1513

55-1 1 1 14702

16111 14790




Level F
The Justification for Two-Level

sign and Analysis of Two-Le Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorial

trictions on Randomizat Split-Plot Desig

Example analysis of an unreplicated design with an o

> fullnornal (coef(nods)[-1] .alpha=.2)

Design and Anal

R

Design and Analy el Fact nd Analyzing Tw orials with
Two-Le

Example analysis of an unreplicated design with an o

> Gaptest(Boxii)
Effect Report
Corrrected Data Report.

Labet If Effect  Sig(.05) Response Corrected Response  Detect Outlier
A 0.400 o 47.46

8 o 49.62 9.62 o
c o 43015 4313 o
0 o 46,31 6,31 o
e o 5147 sila7 o
Ac o 8.9 8049 o
o o 49034 2934 o
BC o 46,10 46.10 o
& o 6,76 6.7 o
@ o 43,56 48.56 o
sac o pres) 24’83 o
280 o 44045 4.5 o
Aco no 59015 5275 yes
BCD o 51,33 5133 o
Aaco no a2 7’02 no

47,00 47,80 o
Lawson, Grimshau & Burt Bn Statistic = 1

95th percentile of fn = 1.201

Initial Outlier Report
Standardized-Gap = 3.353227 Significant at 50th percentile
Final Outlier Aeport

Standardized-Gap = 13.18936 Significant at 99th percentile

ign and Anal,




The Justification for Two-Level
sign and Analysis of Two-Le Creating and Analyzing Two-Level Factorials with R
cking Two-Level Factorial

Example analysis of an unreplicated design with an

Effect Report B
Label  Half Effect  Sig(.05) H

A -4.514306e-15 no &

B -1.710000¢+00 yes

c 1.455000¢+00 yes

0 1.050000¢-01 no Y

8 5.500000¢-02 no §e
ac -B.450000e-01 yes I

2 1.100000¢-01 no

8¢ 2.170070-15 no 1

80 -1.900000-01 no 2

=) 3.450000e-01 no 3

ABC 2.000000¢-01 no

8D -4.000000e-02 no

Aco 6.000000e-01 no

BC -3.900000e-01 no

ABCD 3.600000¢-01 no 2

Lawson, Grimshaw & Burt Rn Statistic = 1.626089 00 05 10 15 20
95th percentile of R 01

Design and Analy el Fac I L
Level Factorials
Randomi

g Tw

Blocking a 2*

Dish Soaking Experiment

Experimental Unit: Response: Number of Clean grid squares

.-
SO

£ = |
| - r.
A=Water Temperature  B=Soap Amount

Tuble 7.4 Factors for Dishuashing Experiment
Levels
, Factor =) (+)
60 Dey

A-Water Temperature 2 F 115 Dog
C=Soap Brand D=Soaking Time
¥

l

B-Soap Amount 1ths 2tbs

C-Soaking Time 3 min 5 min
k D-Soap Brand WF Up
|

ign and Anal,



Blocking a 2*

Blocking factor: Block 1=W.F, 1:30 4 E.U’s per block
Block 2 = W.F,, 1:00

Block 3 = Prego, 1:30 Confound AC, ABD
= Block 4 =Prego, 1:00 AC(ABD)=BCD gets
" confounded

Table 7.5 Blocks for Dishwashing Experiment
Block  Type Sauce Microwave Time

1 Store Brand 1 min

2 Premium Brand 1 min

3 Store Brand 1:30 min

| Premium Brand  1:30 min

> library(Fri2)
> Bdish <- FrF2(16, 4, blocks=c("ABD",

). alias.block.2fis=TRUE. randonize=FALSE)
> Bdish

run.no run.no.std.rp Blocks A B C
1 1.1.1 1-1-1-1
2 2 1
3 3 1
a 4 1
run.no c
5 5 1
6 6 1
7 7 X 1
8 8 2 1
run.no run.no_std_rp Blocks A ]
] 9 4.3.1 E 1
0 10 1
FERtY 1
2 12 1
Fun.no run.no. o
13 1
1 1 1
15 15 1
1

6 16 1
class=design, type= FrF2.blocked
NOTE: colums run.no and run.no.std.rp are annotation, not part of the data frare




tions on Rar

(0, 0, 12, 14, 1, 0, 1, 11,
sh<"add.response(Bdish, respons:
<h

1
A

Lty
NoT LS runono and Tun-no-std.rp are amnotation. not part of
the data frane

Design and Anal

Design and Anal T
ing Two-Level Fmem\,
tions on Rand

Analyze the design ignoring blocks

> mudu; y ~ A*B*C*D, data=Bdish)
> fullnormal (coef(nudu) [-1].alpha=.1)

Normal Q- Plot

8D

Estimated Eflcts
6




s
— effects]

(da

is-na(effects) 1

nanes(effects), alpha=.25)

ating and Analyzing
g Two-Level Fact
tions on Randor

An unlikely interaction




sign and Analysis of Two-Le

king Two-Level Factorials
tions on Randomization - Split-Plot D

Criteria for choosing block defining contrasts

Confounding a 2% in blocks of size 29

1. Choose k-q block defining contrasts
2. Block defining contrasts plus their generalized interactions are confounded with blocks

Example: Confounding a 2° factorial in blocks of size 22=4 225/2% =23 = 8 blocks, 7 df
5-2=3 Choose ABC, CDE, ABCDE as block defining contrasts
then the generalized interactions ABDE, DE, AB, and C are also confounded with blocks.

To find the best generators and block defining contrasts for a particular design problem is not
a simple task. Fortunately, statisticians have provided tables that show choices that are optimal
in certain respects. Box et al. (1978) provide tables for block defining contrasts that wil result
in a minimal number of low-order interactions being confounded with blocks in a blocked 2+
design. Sun et al.(1997) provide an extensive catalog of block defining contrasts for 2* designs
and generators for 247 designs along with the corresponding block defining contrasts that will
result in best designs with regard to one of several quality criteria such as estimability order.

When not specied by the user, the function FrF2 in the R package FrF2 uses the block defining
contrasts from Sun et al.'s (1997) catalog to create blocked 2 designs.

Design and Analy T
Level Factorials
Randomi

g Tw
tions on

Create design with Default FrF2 block contrasts

. randoniz

Blocke . atias_block 2

25<-Frraga2,
mary(Blocked2s)

cant:
Frr2(32, 5, blocks = B, alias.block.2fis = TRUE, randonize = FALSE)

Experinental design of type FrF2.blocked
32 runs

blocked design with 8 blocks of size 4
Factor settings (scale ends):

A8 CoD
1111
111

1
2
Design generating information

c=C 0=0 £=E

§"generators for design itself
[1] full factorial

s"block generators™
[1] ABCO ACE  BCE

o aliasing of main effects or 2fis anong experinental factors

Aliased with block rain effects:
[11 A8 co




Create

The design itselr

Fun-no Fun-no.std.rp Blocks
1 EXR R

1 i
2 2 512 1
R 21 1
Y 204 1
Fun.no run.no. std.rp Blocks
s s 9.2 2
s s w22 2
77 w23 2
s s 224 2
Fun.no run.no. std.rp Blocks
s 5 .51 3
0 10 32 3
u on 733 3
2 1 434 3
Fun-no Fun.no. std.rp Blocks
e P Rt
P 542 4
P 27als
16 a4
Fun.no run.no.std.ip Blocks
7 1505
w1 Bs2 s
0 19 253 s
0 = wsa s

class=design. type= Fre2.blocke

a
NOTE: columns run-no and run-no.std.rp are annotation, 1ot part of the data frane

FTC Short Course - Design and Analysi

ith R

plit-Plot Designs

Multiple process steps make complete randomization very

time consuming

Process Experiments

* Factor in Earlier Step
become Whole Plot
Factor

* Factors in Later Steps
can be varied within and
become subplot factors

FTC Short Course - Design and Analysis of Experiments with R



B actorials
Restrictions on Randomization - Split-Plot Designs

Example - Process for making sausage casing

Grind Collagen

Dissolve to
make Gel
Batch

Extrude Gel
to make Casing
Tube

Design and Analysis of Exp

Design and Anal Level Factorials
I

Restrictions on Randomization - Split-Plot Designs

Test all 4 combinations of C and D in each batch

Sausages can be cooked in many ways from steaming to deep-fat frying, and
nust be able to handle the stress and temperature changes without
Experiments were run to determine how the combination of levels
) and the combination of

u tep affected the bursting

rs A and B in the mal

strength of the final ca

Table 8.4 First Four Batches for Sausage-Casing Experiment

Gel c - + - +

Batch A B D - - + +
1 - - 207 207 210 212
2 - 202 198 200 195
3 -4 209 205 208 205
1 198 1.96 197 1.97




Restrictions on Randomization - Split-Plot Designs

Repeat with another lot of raw material (collagen)

Table 8.5 Second Block of Four Batches for Sausage-Casing Experiment

Gel
Batch A B D - -

2+ -
+

FTC Short Course - Design and Analysis of

Yijk = p+bi + a; + B + afjk + wijk

b; is the random block or collagen shipment effect

@, is the fixed effect of factor A

effect of factor B

By is the fi

FTC Short Course -




I Factorials

Blocking Two-L ctorials
Restrictions on Randomization - Split-Plot Designs

Split-plot model has two error terms

The model for the complete split-plot experiment is obtained by adding the

split-plot factors C and D and all their interactions with the other factors as

Block (Collagen Lot) Block interactions
(variality in gel batches)
Yijkim = p+ bi + o + Bk + aBjk + wijk
$ G+ Y01 + 751 + B
+ Bt + Bokm + aBvjk + B8 jkm
+ adjx + BY0kim + aBYjkim + €ijkim

Design and Anal

Design and Anal
Is

L
Restrictions on Randomization - Split-Plot D

Create

Fun.no run.no.std.rp A B WP3 C D

2 29 is.4.3 114
16.4.4 - 111
13401 - 1o11
142 - 111

class=design, type= FrF2 pl:

n. not part of the data frane

tolot
NS Fun.no and run.no.std.rp are annotat




el Factorials

4 package: Natrix
red package: Repp.

Attaching package: Ired”

The following object is nasked fron “package:dacur"

cake

k) + €+ D+ C0 4 AT+ AID +

o o
2a ALBIC:D, Gata-sausage)

astoc) + @
€D Bic0 ¥

A:BiD

)

Linear mixed nodel fit by REWL

Fornula: ys ~ A + & »A—sq;|s.m)»<;|us.m) vpeco
ASC + A:D # BIC ¢ BD 4 ABIC + DRt
Data: sausage

REUL criterion at convergence: -69.4

st residuats
Min 10 vedian
1508 0,303 00000 0.3108 1.508

sanden effects:
Groups variance
Aotk Cintercepty 0-03556 01048
(intercept) 00000000 0 00000
i 0.0002385 0.01544
Nonbor of obs: 32. roups:  ArB:Block. 8; Block, 2

> anova(rmod2)
Analysis of Variance Table S—

High Level

rorcoo>

B
B
A
A
o
B
A

10000261 00000281 0.1179

Effect of factor A depends
upon the combination
of levels of factors B and C




I Factorials o
Blocking Two-L

actorials
Restrictions on Randomization - Split-Plot Designs

An unreplicated split-plot design

Bisgaard et /(1996) described an experiment that was performed to study the plasma treatment
of paper, between electrodes in a low vacuum chamber reactor, to make it more susceptible to ink.

The factors are shown below.

Levels
Factor - + Difficulty in Changing Levels
A-pressure  Low  High

B-Powerlevel Low  High dificult requires a new set up to change
C-GasFlowRate Low  High  difficult requires a new set up to change
D-TypeGas  Oxygen SiCl, difficult requires a new set up to change
E-PaperType A B easyboth types can be treated in the same

run after setup is complete.

Design and Anal

fication for T
Design and Anal g I Fa
locking Two-L sctorials
Restrictions on Randomization - Split-Plot D

The data frame plasma is in the daewr package

Table 8.6

a Experiment Fuctor Levels and Response
&

Whole-Plot Effects

A,B,AB, C, AC, BC, ABC, D, AD, BD, ABD, CD, ACD, BCD, ABCD

Split-Plot Effects
Eand interactions with €

> library(daeur)
ol < In(y ~ A*B*CAD*E, data = plasna)
effects < coef(sol) PO
effects < effects[c(2:32)] - - - s
peffects <- effects[c(1:4, 6:11, 16:19, 26)] + - - s
Speffects <- effects[o(5.12:15,20:25,27°31)]




sign and Analysis of Two-Le sting and Analyz:

Blocking Two actorials
Restrictions on Randomization - Split-Plot Designs

Analysis by normal plot of all effects is misleading

> fullnornal (effects, names(Wpeffects), alpha = .10)

Figure 8.6 Normal Plot of All Effects—Plasma Esperiment

o)
- 2
o
T T T T T
2 1 0 1 2

Design and Analy
king Two-L actorials
Restrictions on Randomization - Split-Plot Designs

Normal plot of whole-plot effects

Wpeffects, names(Wipeffects), alpha = .10)

Figure 8.4 Normal Plot of Whole-Plot Effects—Plasma Ezperiment

A
w A
s
]
H “




> fullnormal (Speffects, names(Speffects). alpha = .05)

Figure 8.5 Normal Plot of Sub-Plot Effects—Plasma Esperiment
2
2 o 000
3 _
H
&
o |
U v T r
2 1 0 1 2

FTC Short Course - Design and Analysis of Experiments with R

Part IV

Design and Analysis of Preliminary
Experiments for Estimating Sources of
Variance

FTC Short Course - Design and Analysis of Experiments with R



Outline of Part IV

o Preliminary Exploration
@ Introduction
@ One-Factor Designs
@ Two-Factor Designs
o Staggered Nested Designs for Multiple Factors
@ Graphical Methods to Check Assumptions
@ Chemistry Example

Introduction

actor Design:
r Design:
Nestec Itiple Facto

0% Knowledge 100%
Objective: Preliminary Screening  Effect Optimization Mechanistic
2xploration  Factors Estimation Modelin

No. of 5-20 3-6 2-4 1-5

Factors

Purpose:  Identify Identify Estimate Fit Empirical Estimate
Sources of  Important ~ Factor Model Parameters
Variability ~ Factors Effects +  Interpolate ¢

Interactions E




Preliminary

Identify fruitful areas for identifying factors

Sampling Experiments

« Identify Process Steps
that contribute the most
variability

« Later identify factors in
variable process steps
that cause the variability

FTC Short Course - Design and Analysis of Experiments with R

One-Factor Designs

Preliminary

Two sources of variability

Hare (1988) discussed experiments to control variability in dry soup
mix “intermix” (vegetable oil, salt flavorings etc.).

e too little not enough flavor

® too much too strong

FTC Short Course - Design and Analysis of Experiments with R



One-Factor Designs
f Sesign:

Preliminary

Possible Factors

A-Ingredients
8- Cook temperature.
C- Dryer temperature
D - Dryer RPM, etc

€ - number of mixer
ports for Vegetable oil

F - temperature of
mixer jacket

G - Mixing time

H - Batch weight

1- delay time between
mixing and packaging,

et

One-Factor Designs
¥

Design:
Preliminary

Method of Moments Estimators

uttre,, i=14, j=13 k=4, r=3

Wi

Table 5.4 Variability in Dry
teh

up Intermiz Weights

Source df MS EMS

Factor T t-1 msT  ol+ror
Error tr-1) msE o’




One-Factor Designs
Factor Designs
sted Designs for Multiple Factor

i3 R Console =4
~
(daewr)
seight ~ batch, data=soupmx)
1)

Df Sum Sq Mean Sq F value Pr(>F) P P
patch 3 1.661 0.5535 0.32 0.811 o’ +30;,
Residuals & 13.850 1.7312
>

v

1.7312
0.5535-1.7312
<

0.0

b

One-Factor Designs

Factor Design:
Staggered Ne: Itiple Fa
Graphical Me Check Assumption:

Maximum Likelihood and REML estimators

Vi = Mt e, y=XB+e 8= (1)

t 0 ol 0 .
( . Jmm N (( 0 )( 'O‘ 21, )) Ipisatxt Identity matrix




One-Factor Designs
Factor Designs
Nestec

Yy =Mt e, y=XpB+e 8= (p.t)

(1)

maximum likelihood estimators for o7 and o” are found my maximizing

s=
o
N
Lo

Iyisatxt Identity matrix

exp[-1(y - p1a) Vi (y - pln)] P s
1 vl - SO Y (0 1) '(’/(' ?‘“ -], ol T T ]

One-Factor Designs
Factor Design:
Nestec Itiple Factor

Graphical Me

Vi = HHt e, y=XPB+e 8= (p.t)

t . 0 ol 0
( : )Nm N (( o ) ( "OL 2, )) Ipisatxt Identity matrix

1

S S PR,
Loy - A /1,.»"\” w-nw)] i(

@-p)?
+Nn

a2 AnI AT

REML estimators for o7 and o*are found my maximizing

_ L(ro®Aly)
777




One- me Designs

Preliminary

rary(daewr)
brary(Imed)
> mod2<-Iner (weight ~ 1 + (1|batch), data=soupnx)
> summary(mod2)
nixed odel it by RO [Ineriod]
Fornula: weight ~ 1 + (1 | batch)

soupmx

H

RENL criterion at convergence:

Scaled residuals:
in Vedian 3Q Max
-1.56147 -0.71722 -0.01614 0.43230 1.86604

Randon effects:
Nare variance Std.Dev.
(intercepe) 0.00

Residual T
Number of obs: 12, qroups: batch, 4

xed effects:
Estinate Std. Error t value
(Intercept)  2.3742 0.3428  6.926

Design and Anal

One-Factor Designs

Factor Design:
Preliminary Nest

The next step - screening factors

2
S % _
A
Objective: Preliminary  Screening
xploration  Factors

\.. of
ctors

Factor Label Name Low Level  High Level
A Number of Ports

B Temperature Cooling Water Ambient
C Mixing Time 60 sec 80 sec

D Batch Weight 1500 1h 2000 1

E Delay Days




Preliminary

Nested design

Nested Design

Preliminary

Staggered nested design




Factor Designs
Staggered Nested Designs for Multiple Factors
‘ | Methods to Che

Staggered nested design

3 Stage 4 Stage 5 Stage 6 Stage
x | |
s [

° il

sctor Design:
Factor Design:
Staggered Nested Designs for Multiple Factors
Graphical Methods to Che

Example

Method of moments estimation

Stages Term EMS

Staggered 3 +(5/3)0% + 305
Nested  Nested B +(4/3)0%,
Source df df C i
A a-1 a-1 1 \ 05 + (3[2)0% + (5]2)0% + 405
Bin A a a B a3+ (7/6)0?
CinB a 2a o] o7, + (4/3)a?

DinC a da D oh




OneFactor Design
Factor
Staggered Nested Designs for Multiple Factors

E Methods to ¢

Designs
Preliminary

An Example

Mason et al. (1989) described a study where a staggered nested design was used to estimate the
sources of variability in a continuous polymerization process. In this process polyethylene pellets

are produced in lots of one hundred thousand pounds. A four-stage design was used to partition

the source of variability in tensile strength between lots, within lots and due to the measurement
process.

Lots

Box within Lot
Preparation within Box

Repeat strength test
within preparation

Design and Anal

or Design:

v Design
Staggered Nested Designs for Multiple Factors
Graphical Methods to

Preliminary

Data from the first 10 of 30 lots

Table 5.13 Data from Polymerization Strength Variability Study

Box 1 Box
Preparation  Preparation

2 1
Lot _test 1 test2 test 1 test |

T 076 924 1101 9.02
21065 10.00 13.60
3 6.50 8.02
4 808 0.15
5 7.84 7.43
6 9.00 7.01
71281 1113
81062 1LT1L 1407
9 LSS 406 408

10 038 802 673




Fa
Staggere ns for Multiple Factors
Graph e he

Method of moments estimat

R R Console ===
- Data frame
polymer
isinthe
Resiguals 30 19.4 O daewr
Signif. codes: 0 ‘err 0001 “eer 0.01 % 0.05 t.f 0.1 ¢ 1 package
% =0.648
o = (2.281-0.648)/(4/3) 24

0% = (1670 - [0.648 + (7/6)1.22475])/(3/2) =
0% = (20.516 - [0.648 + (3/2)(1.22475) +

FTC Shor Design and Analysis of Exp

Factor Design:
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumption:

REML estimators

R R Console

% Total
81.1%
0.0%

groups: 1o s 0 105, 30




Preliminary

Fa
anmm Muhod) o Check A»umpwm

Variance compon

ts are pooled variances

Box 1 Box 2 Sourec Variance
Preparation  Preparation
2 Error or test(prep)
Lot test1 test2 test 1 test 1 prep(box)
i Yo Y Y Y,

Preliminary

box

rmpmra\ Mn(hud> o Check

Computing and graphing variances

Box 1 Box 2

Preparation  Preparation
1

Lot test1 t test 1
i Vi Yu
> library(daewr)
data(polyner)
array( polymerSstrength, c(4,30) )

- sqre( (vI2.1 - yIL,1)*2 7'2)
< sart( (2/3) = (yI3.1 - I

: length(sd2))
gnorm( ( ( r -
ore, 0sa2,

R

Sourec Variance s?

Error or test(prep)

prep(box)

box

: y o
(- gy

y[2,1) 7 2)**:

* D**2 )
sare( (3/4) * (vI4.1 - (v[1.1 + y[2.1 + y[3.1 )/3 )**2)
<- sort(sd2)

5. tength(sa) 1 37 2)

Half-normal mm of prep(box) standard
Half Normal Score™

“std. due to prep




Computing and graphing variances in

Preliminary

hemistry E:

R

Figure 5.6 Half-Normal Plot of Standard Deviations of Prep(Boz)

b

Odd value in Lot 19

$ Raw Data for Each Lot
Y

Preliminary

ed Nested i
Graphical Methods to Check Ass
Chemistry Exas

and Caleulated Standard Deviations

TO68 L1l

002 0368
0
7.05
746
611
10.00
1456

Staggered Nested Designs for Multiple Fa
Graphical Methods to Check Assumption:
[ o




Preliminary

Staggered Nested Designs for Multi
Graphical Methods to Check Assumptions
[ o

hemistry E:

Reanalysis excluding lot 19

Table 5.19 Comparison of Method of Moments and REML Estimates for Polymer-
ization Study after Removing Lot 19

Method of Moments  REML

Component Estimator Estimator
Lot (o 5.81864 6.09918
Box(Lot) (¢7)  0.13116 0.04279

0.76517 0.79604
.63794 0.64364

Prep(Bos
Error (0?)

) (o,

Design and Anal

Preliminary Itiple Fax
F: | umption:

Method
Chemistry Example

Catalyst Support Material

“Interest in catalyst support in lab
*The rate of catalyst reaction is related to the available number of catalytic sites. To increase the
number of active sites, catalysts are dispersed on a support

“Interest in making Al,O; catalyst support

1. High thermal stability

2. High surface area

3. Mesoporous nature

“Important catalyst support properties

1. High surface area bincrease catalyst dispersion and catalytic reaction sites ->decrease reaction times.

2. Optimal pore size ->each catalytic system requires a unique pore size -Ybetter diffusion and selectivity.

3. Thermal stability -»many catalytic reactions take place at elevated temperatures.




Preliminary

Graphical Method:
Chemistry Example

Applications of Alumina Catalyst Support

* Aluminum oxides support applications

1. Automotive Gasoline Catalytic Converters, which converts toxic chemical (carbon monoxide and unburned
hydrocarbon) in exhaust to O, and H,O.

Fischer-Tropsch synthesis (FTS), which liquid fuels are produced from natural gas.

Fischer Tropsch

Preliminary
Graphical Method:
Chemistry Example

Process to Create Alumina Catalyst Support

Basic Synthesis Method

FTC Short Course -



One-Factor Design:
Factor Designs

ed Nest Itiple Factc

Graphical Method:
Chemistry Example

Preliminary

Exploration Experiment 1

Baten oven poroy 54
35 188
Batch e

z
Batch 3

Sample oven
Oven
0, 0,0 i

o, 0,0, X i

0,=0, %0, 2

Preliminary Itiple Facto
F: | umption:

Method
Chemistry Example

Analysis of Exploration Experiment 1

> modEl<-Imer(Porev ~ 1 + (1|Batch), data=Expl)

sunmary(modEL)

r mixed nodel by RENL [*Imeriod*]
Porev ~ 1 + (1 | Batch)
Expl

Dat:

REML criterion at convergence: -42.4
Scaled residuals:

Mi Median 3Q Ve
-2.21247 -0.57360 -0.07284 0.72383 1.61155

Randon effects:

Groups  Name Variance Std.Dev.
Batch  (Intercept) 0.00000 0.0000
Residual 001206 01098 dummmm

Nunber of obs: 30, groups: Batch, 10

ixed effects:

stinate Std. Error t value
(Intercept) 1.24300  0.02005  61.99




Preliminary | Itiple F:

umption
B gt

Analysis of Exploration Experiment 1

> modEl<-Imer(SA ~ 1 + (1]Batch), data=Expl)
> summary(modE1)
Linear mixed model fit by RENL [*lImerliod"]
Formula: SA ~ 1 + (1 | Batch)

Data: Expl

RENL criterion at convergence: 218.1

uals:
Median 3Q Max
-1.3054 -0.6465 -0.1561 0.8390 1.5276

Scaled re:

Randon effects:

Groups  Name Variance Std.Dev.
Batch  (Intercept) 37.09 090
Residual 7177 8.472 dumm—

Nurber of obs: 30, groups: Batch, 10

Fixed effects:
Estimate Std. Error t value
(Intercept)  175.67 2.47  71.12

Preliminary Itiple Fax
Q C umptior

Chem\alm E'amme
Residual Variability

‘Oven Number)

> boxplot(SA-Oven, data=Expl, ylab="Surface Area”, x

0 = = " WemcsDasee 0CTE T




ed Nested
Graphical Method:
Chemistry Example

Possible Explanation

Batch

sample

‘ oven

“—

0, 0,0, X
~__

maybe extra time on the bench affects PoreV and SA not Oven

r Design:
s ed Nested Itiple Facto
Graphical Method:
Chemistry Example

Exploratory Experiment 2

> Exp2

Batch Oven PoreV SA
1.19 170
1.18 172
1.05 186 ~—
1.11 180
1.06 180
1.14 197 «—
1.16 214
1.49 208
1.33 292 «—
1.44 224
1.32 210
2.22 325 «—

CENOUAWN R

10
11
12

ARPWWWNNNRE R R
WNRPONRWONRON R




Preliminary

Itiple Factors
raphi umption:

I I Method
Chemistry Example

Another Conjecture

> Exp2
Batch Batch

Oven 0,0, 0

1

2

3

4

sample Oven g
6

7

0,0,0, X 8
9

AEPOWWNNNR R

Batches 3 and 4 used a different (slower) filter and thus
er exposure time to sec-butanol which seemed
Volume and Surface Area

had a lo
to affect

ng:
P

Preliminary Itiple Fax
F: | umption:

Method
Chemistry Example

Experiment to Estimate Effects

split-Plot Fractional Factorial

> Exp3
Batch Mix_Tine Bench Time Exp_Tine Boats PoreV SA
1 1 1 1 1 1 177
2 1 1 1 -1 -1 064170
4 1 1 -1 11 068210
5 2 e -1 11 17 101
6 2 -1 1 141113 169
7 2 a g 3 71 T5S s08 | Boats= Bench Timex Exposure Time
8 2 -1 1 11 113173
9 3 1 1 1 oles 137
0 3 1 1 11 098137
13 1 a 1 1 o006 101 [ Bosts=BenchTime
23 1 1 11 NN
B4 a =) 11 0.99 218
154 -1 1 1 -1 124191
6 a4 -1 -1 1 11e

ign and Anal,



Preliminary

Itiple Factors
raphi umption:

I I Method
Chemistry Example

Experiment to Further Study Relationships

Split-Plot 3° Fractional Factorial

Exp_Time Boats PoreV SA
1

1 1 1 0.93 187
2 1 1 -1 1 0.94 132
3 2 1 1 1 0.68 210
4 2 1 -1 -1 0.66 187
5 3 -1 -1 -1 1.31170
6 3 -1 1 1 1.19 217
7 4 0 1 0 0.75 143
8 4 0 0 1 0.75 137
9 5 1 [} 0 1.00 164
10 5 -1 0 0 1.02 171
1 6 -1 1 -1 1.11 203
12 6 -1 -1 1 1.17 191
13 7 0 o 1 0.70 140
14 7 o 1 0 0.76 171

Preliminary Itiple Fax
F: | umption:

Method
Chemistry Example

Results of Experiments

o . 0
S S T -
%y

prefiminary  Screening  Effect Optimization

Exploration  Factors Esimation

Exp1.Exp2 Expa—Expa

Effect of Factors on Catalyst Support Properties

Properties
Factor Pore Volume | _surface Area
Mixing Time +

Bench Time -
Exposure Time to sec Butanol -

1. High surface area ->increase catalyst dispersion and catalytic reaction sites ->decrease reaction times.
2. Optimal pore size >each catalytic system requires a unique pore size ->better diffusion and selectivity.




Part V

Design and Analysis of Screening
Experiments

FTC Short Course - Design and Analysis of Experiments with R

Outline of Part V

@ Design and Analysis of Screening Experiments

@ Introduction

@ Half-Fractions of Two-Level Factorial Designs

@ One-Quarter and Higher Fractions of Two-Level Factorial
Designs

@ Criteria for Choosing Generators for Fractional Factorial
Designs

@ Augmenting Fractional Factorial Designs to Resolve
Confounding

o Plackett-Burman and Model Robust Screening Designs

FTC Short Course - Design and Analysis of Experiments with R



Introduction

evel Factorial
her Fractions of T
v g stor
Fractional Factorial
A

tt-Burman fel R

Number of Experiments required for Two-Level Factorials

Number of Factors | Number of Experiments
4 16

32

64

128

256

512

©|o| || ;

One-at-a-Time Experiments

A Poor Solution is to Use One-at-a-Time Experiments

Ri

5

S
N (]
P
N

E
+

CoNO U s WwNRE
N




Fractional Factorial Designs

@ Method for strategically picking a subset of a two-Level
Factorial

o Used for Screening purposes

@ Has much higher Power for Detecting Effects than
One-at-a-Time Experiments

@ Can be used to estimate some interaction effects and do
limited optimization

FTC Short Course - Design and Analysis of Experiments with R

Screening

Paradigms that Justify the Use of Fractional Factorials

o Effect Sparsity Principle-Box and Meyer (1986)
o Hierarchical Ordering Principle-\WWu and Hamada(2000)
o Effect Heredity Principle-Hamada and Wu(1992)

FTC Short Course - Design and Analysis of Experiments with R




Half-Fractions of T\
r and Hi

hoosing Generators for Fractional
Fractional Factorial Designs to F
el Robust i

Procedure for Constructing a Half-Fraction

For example, to construct a one-half fraction of a 2 design, denoted by

or 2871, the procedure is as follows:

1. Write down the base design, a full factorial plan in k - 1 factors using the
coded factor levels () and (+).

Add the kth factor to the design by making its coded factor levels equal to
the product of the other factor levels (i.e.. the highest order interaction).

Use these k columns to define the design.

Design and Analysis of Exp

The Base Design

! Base Design




Augmenting Fractic

sckett-Burman and

Adding an Interaction Column

2*" Base Design

FTC Short Course - Design and Analysis of

menting Fractic
sckett-Burman and

Xo

FTC Short Course - Design and Analysis of Experiments with R




Level Factorial Designs

Half-Fractions of Tw

The Defining Relationship

2*' Base Design
Xo

Xa Xo o Xe Yo
generator of the design

D = ABC

D? = ABCD
or
I=ABCD

relation for the fractional factorial de:

Half-Fractions of Two-Level Factorial Designs
ne-Quarter and Higher ns of Two.

r Choosing Ge
ugmenting Fractional F

stors for
5 torial De
sckett-Burman and Model Rob

A(I) = A(ABCD)
1= BCD
I+ABCD
1+ BCD
B+ACD confounding pattern
C+ABD L or alias structure
D+ ABC
\B+CD
AC + BD

AD + BC




Half-Fractions of Two-Level Factorial Designs

One-Quarts  Fractions ¢

Screening

Augmenting Fracti

sckett-Burman an

An Example of a Half-Fraction

Table 6.3 Factors and Levels for Soup Mix 2°~* Experiment

Factor Label ~Name Low Level  High Level
A Number of Ports 1 3

B Temperature Cooling Water  Ambient
C Mixing Time 60 sec. 80 sec.
D Batch Weight 1500 Ibs 2000 Ibs
E Delay Days 7 1

Half-Fractions of Two-Level Factorial Designs
One-Quar figher Fra:

ugment tional F
sckett-Burman and

Creating the Design with FrF2

> library(Fri2)

> soup < FrF2(16, 5, generators = “ABCD", factor.names = list(A=c(1.3)
8=c("Cool", "Atbient™) ,

c=c(60.80) .D=C(1500,2000), E=c(7.1)). randomize = FALSE)

1500
1500
1500
1500
1500
1500
1500
1500
0 2000
2000
2000
2000
2000
2000
2000



Ha“ (el Tl i) B

ns of

sckett-Burman and

Adding the Response

97, 1.70, 1.47, 1.28, 1.18, .98, .78,
. .62, 1.09, 1.10, .76, 2.10 )

brary(DoE _base
add- response( soup . y )

Design and Anal

HaH Fmrmm f Two-Level Factorial Designs
actions of Two-Ls
ators for Fractio
torial Designs to Resolve Confoundin
fel F Screening Design:

> mod1 Cy - (.)"4, data = soup)
> aliases(mod1)




Half-Fractions of T\
r and Hi

hoosing Generators for Fractional
Fractional Factorial Designs to F
el Robust i

Paradigms that Simplify the Interpretation of Results

o Effect Sparsity Principle-Box and Meyer (1986)
o Hierarchical Ordering Principle-\WWu and Hamada(2000)
o Effect Heredity Principle-Hamada and Wu (1992)

Design and Analysis of Exp

Analyzing the Data

- nod2<-In(y-(.)"2, data=soup)
sumnary(nod2)

cant

fault(fornula = y - (.)"2. data = soup)

Residuals:
ALL 16 residuals are 0: no residual degrees of Freedom!

Coefficients:
Estinate Std. Error t value PreItl)
“ooma NA

(Intercept) 1.22625 o
AL 007250 [ NA
6L 0.04375 NA NA A
1 0.01875 A A A
o1 -0.01875 [V NA
EL 0.23500 NA N Na
AL:B1 0 00750 NA NA NA
ALiC1 0.04750 NA NA N

ALDL 0.01500 A A A
AL:EL 007625 [V NA
BLiC1 ~0_03375 NA NA NA
BL:D1 0.08125 NA NA A
BLIEL 0.20250 A A A




Half-Fractions of Two-Level Factorial Designs
One-Quart  Fractions of F

Screening

Augmenting Fracti

sckett-Burman and

Half-Normal Plot of Coefficients

> library(daenr)
> LGB(coef(nod2)[-1], rpt=FALSE)

Half-Fractions of Two-Level Factorial Designs
One-Quar figher Fra:

ugmen tional F

sckett-Burman anc

> Soup <~ FrF2(16, 5. generators B

+ Tist(Ports=c(1 ool :

+ Batchivt=c(1500.

>y < o(1.13, 1

+1.36, 1.85, 62, 1.09, i

> Tibrary(DoE . base; H

> Soup <- add. response( Soup . y ) H

- delay <- as.numeric(sub(-1. 7. soupSdelay)) i
temp <- soupSTemp H

> interaction.plot(delay, temp, soupSy, type="b", .

. p 8 i s

. nteraction Plot for Mixing Tenperature by Delay tire,

+ xlab="Delay Time (days)", ylab="Average 5.D. Fill Weight") R




falf-Fractions of Two-Level Factorial De
 and Higher Fractions of Two-Level Factorial Designs

ing s tor al
Fractional Factorial Designs to F
el Robust i

onfounding in Higher Order Fraction

=27 ks the number of factors, p is the fraction power

* In a one half fraction of a 2 experiment every effect that could
be estimated was confounded with one other effect, thus one half
the effects had to be assumed negligible in order to interpret or
explain the results

* In a one quarter fraction of a 2% experiment every effect that can
be estimated is confounded with three other effects, thus three
quarters of the effects must be assumed negligible in order to
interpret or explain the results

* In a one eighth fraction of a 2 experiment every effect that can
be estimated is confounded with seven other effects, thus seven
eights of the effects must be assumed negligible in order to
interpret or explain the results, etc.

Design and Analysis of Exp

kett-Burman and

Procedure for Constructing Higher Order Fractions

Creating a 2P Design

1. Create a full two-level factorial in k-p factors

2. Add each of the remaining p factors by assigning them
to a column of signs for an interaction among the first
k-p columns




falf-Fractions of T | Factorial

menting Fr
sckett-Burman and

Example of Quarter Fraction

Yo X

Xi Xp Xe XiXp XaXe XpX

Yo Xo Xe Xp X

LT N D=ABand E = AC

These are the generators




One-Quarts

Screening

Plackett

Example of Quarter Fraction

D= AB and F

I=ABDand]

1

since I

ABD(ACE)

actorial

Fractions of Two-

the generators

the generalized
interaction

|
1=BCDE

= ABD = ACE = BCDE

the defining relation

alf-Fractions
One-Quarter and Higher Fractior

Factoria
orial Designs

ns of Two-|

T
Stors

sckett-Burman and

“AC") , randomize=FALSE)




View the Alias Structure

>y <= runif( 16, 0, 1)
> aliases( In( y ~ (.)*3, data = frac) )

c

E
E
E:
B
c
c

Domnnm

:B:C = AE:F

falf-Fractions of T | Factorial
rting Fr

sckett-Burman and

Some Generators Better than Others

> frac <- FrF2( 16, 6, generators = c("ABC", “BCD"),randomize=FALSE)
y = ("3, d

> aliases( In( ata = frac) )

B
A
BoD-
A
A
A




Criteria for Choosing Generators

o Resolution-Box and Hunter(1961)
@ Minimum Aberration—Fries and Hunter 1980
o Maximum Number of Clear Effects—Chen et. al.(1993)

FTC Short Course - Design and Analysis of

& Generators for Fr:
ugmenting Fractional Factorial Desi
sckett-Burman and Model Rob

Criteria for Choosing Generators

Resolution—Shortest Word in the Defining Relation

Resolution Il Main effects confounded with two-factor interactions

Resolution IV Main effects confounded with three-factor
interactions, two-factor interactions confounded with
other two-factor interactions

Resolution V' Main effects and two-factor interactions estimable,
assuming three factor and higher order interactions
negligible

Resolution R Each subset of R-1 factors forms a full factorial
possibly replicated

FTC Short Course - Design and Analysis of Experiments with R



| Desigr
ial Designs

¢ Design:

7 # nainun resolution minimun sberration design with 9 factors in 32 runs
sha infor tead of design itself
2 Gosian. info(FrF2(32.,0%)

scatlg.entry

1
9 factors,

g columns: 7 1119 29
WP Gplus 06500 s 3 clear 2fis
3

Factors witl 2fis clear:
saliased

sal ger

[1] “A=A" e GG HeH" 3=

saliasedsrain
character(0)

“AF=BC™
"CG=DF"

D=FG'
5] e e “DH=EG"

Design and Anal

el Factorial Designs
sctions of sctorial Design
ing Generators for Fractional Factorial Designs

mum nunber of free 2-factor interactions
n_infornation instead of design

Generating colums: 7 11 13 30
WP Gplus): 07700 . 15 clear 2
Factors with all 2fis clear:

Saliased

saliasedsmain
character (0)

" AC=BF=DH"

“AD=BG=CH" “AF=BC=GH"




e e s s

Cm .a«m Chocsing Generators or Fractionsl Factoral Deswgn:
Fractional Fatoril D «

e e T

Example of One-eighth Fraction

Iron Oxide Coated Sand (I0CS) used to remove arsenic from ground
water in simple household filtration systems. Coating solution made of
ferric nitrate and sodium hydroxide with NAOH added to control pH.

Mix Coating

| 'Age coating Pour over Dn
Solution

Solution clean sand

fepeat | =<

yes no

Ramakrishna et. al. (2006) conducted experiments to optimize
The coating process.

Factors and Levels

Table 6.7 Factors and Levels for Arsenic Removal Experiment

Levels

Label  Factors - +

A coating pH 2.0 12.0
B drying temperature 110° 800°
(o] Fe concentration in coating 0.1 M 2M
D number of coatings 1 2

E aging of coating {hrs 12 days
F pH of spiked water 5.0 8.0

G mass of adsorbent 0.1g lg




arsrm<-Frf2(8,6,generators = c("Al
, 58.65, 56.25, 53.25, 94.40, 73.45,
.base)

arsrm2<-add. response(arsrm,y)

arsrm2

ABCODEF y

-1-1-1 1 1 169.95

1-1-1-1-1 158.65

-1 1-1-1 1

1 1-11-1

“1-11

1-11

-1 1 1

1

1
lass=design,

fig
for Choosing
rting Fraction:
sckett-Burman anc

Generators

“BC"), randomize=FALSE)
10.0, 2.11)

for Fractior
rial De
fel Rok

igns to R

)
8(estef, pt=FALSE)

iases(Lnod)




of Two-Level Factorial

Cm iafor Chocsing Genarators

for Fractional Factorial Deswgrn
Fractional Fatoril D

e e T :

Possible Interpretations of Results from 'Effect Heredity’

Important factors Optimal Levels

1. B-Drying Temperature & F — PH of Spiked Water

Low Drying Temp.
and Low PH
2. B~ Drying Temperature & BC interaction Low Drying Temp.
€~ Fe concentration in coating High Fe Conc.
3. F—PHof Spiked Water & CF interaction Low PH
High Fe conc.

(I=PQR)

(I=ABC) Q
B C R

(I+ABC)x(I+PQR) =+ ABC+ PQR+ ABCPQR

Resolution ITT




Split-Plot Confounding

P = -QR when whole-plot factor A is at its low le

P = +QR when the whole-plot factor A is at its high level
ABC)
A B C
- - & I--PQR
- - =+PQR
N I=+PQR g esolution IIL, but less aberration
-+ - I=-PQR

+ 4+ + I[=+PQR

P = AQR = (1 + ABC)(I + APQR) = | + ABC + APQR + BCPQR

figh ns of
for Choosing Generators for Fractior
rting Fractional Factorial Designs to R
sckett-Burman and Model Robust Scr

Creating a Minimum Aberration Split-Plot Fractional
Factorial with FrF2

0w
1 11
2 1
3 14
i 2 10321111 11
Fun.no Fun.no.sti.ip ABC P O R
5 s 1421111 1-1
6 s 1Baa4111 11 1
77 133111 111
s s BA1111 1 1
run.no run.no.std.rp AB © P Q R
9 5.2.0 111 -1-1-1
0 10 723114 111
u ou B24 111 1 141
FrRT] 622 111-1 11
Fun-no run.no.st.ip A BC P O R
1 n 404111 1 1-1
Fr R} 2121011 11
PR 114
36 13111 101
class=design, type= FrF2.splitplot

NOTE: columms. run.o and run-no-std.rp are amotation, not part of the data frane




rnorm(16,0,1)
ases(Im( y ~ (.)"3, data=SPFF2))

POTWOO0O000

figh ns of
for Choosing Generators for Fractior
rting Fractional Factorial Designs to R
sckett-Burman and Model Robust Scr

Analyzing a Split-Plot Fractional Factorial

.2 Analysis of a Fractional Factorial Split-Plot

Table 8,10 Fract

onal Factorial Split-Plot Design for Gear Distortion
P + +

A B CQ - - + +
X x
+ - x x
x x
e - X x
- - 4 X x
' X x
v X x
' x x

The defining relation is I = ABCP@Q, and the




falf-Fr of Two-Level Factoria
One-Q r Fractions of
Criteria for Choosing Generators for Fi
gmen . De
bust

Fractional Factorial
sckett-Burman and Model R

Whole-Plot and Sub-Plot Effects

Table 8.11 Estimable Effects for Gear Distortion Ezperiment

Whole-Plot Sub-Plot
Effects Effects

A+BCPQ | P+ABCQ

B+ACPQ | Q+ ABCP

C+ABPQ | AP+ BCQ

AB+CPQ | AQ + BCP

AC+BPQ | BP+ACQ

BC+ APQ | BQ+ACP

ABC+PQ | CP+ABQ

CQ+ ABP

One-Q igher Fra
Criteria for Choosing Generators for Fi
ugmenting Fractional Factori
ackett-Burman and Model F

Analysis with R

B, 7C g

Sot<-1n y-
Surrary(sol)

cant
In.default(fornuta = y = A% B2 C % P * 0, data = spexp)

duals are 0: no residual degrees of freedont

Coefficients: (16 not defined because of singularities)
Estinate Std. Error € value PGt

1 Qntercepty  15.4062 WA
~ 45063 Mo I
=5 om o162 I I
Whole —¢ 1 3.0688 WA N
Plot son 2203 WA N
¢ a S3laoe [P N
Efects ;e 0.1 N I
e omia 2,906 N A w
s omia 0La052 [P .
1 AL 0 6063 Mo n
1 BLPL 1,093 [P I
1 cupL 0.2812 MW I
5 Ao 0’3438 [P I

note: P 01563 N

ABCPQ 35 prigr 0’5038 Mo




> fullnornal (Speffects, nanes
> fullnornal (ipeffects, nanes(

Criteria

Screening

)1
frocts)
peffects)

schett

for Choosing Generators for Fr:
rting Fractional Factorial Desig

B el Rob

| Design:
Designs
urman and Mod

Augmenting
sckett

hoosing Generators for Fractional Factorial Des
Fractional Factorial Designs to Resolve Confounding
fodel F Screenin;

i &
o . T . Y . T I-ABD=ACE=BCF=DEF = BCDE = ACDF = ABEF
Pl I Dontundeavine
i ; 1= ABD = ACE = -BCF « DEF «~BCDE = ACDF = -ABE
TR

dcting reotion [

|- ACE - DEF - ACDE Do longercontounded it A8




jo-Level Factorial
figher Fractions of Two

ing Generators for Fractional Factoria
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-B lodel Robust Screening Design:

Augmenting the IOCS Experiment

arsrm3<-fold design(arsrm, colums="full")
y<-C(69.95,58.65,56.25,53.25,04.4,73.45,10.0,2.11,16.2,52.85,9.05,31.1,7.4,
9.9,10.85,48.75

arsrmd<-add. response(arsra,y)

> arsrmd

1 y

2 Combining a resolution Il design

3 with a mirror image (signs reversed
; on all factors) results in a resolution
e IV design where no main effect is

7 confounded with a two-factor

8 interaction

9

10

11

12

13

1

15

16 -1-1 -1 E

mirror -1 48.75
class=design, type= FrF2.generators. folded

Design and Anal

Criteria for Choosing Generators for Fractional Factorial Des
Augmenting Fractional Factorial Designs to Resolve Confounding
sckett-Burman and Model Robust Screening Design:

Alternative Explanations after Analysis of Combined Data

AD confounded with CF in the combined data

) () ]
el ) E




jo-Level Factorial
figher Fractions of Two

ing Generators for Fractional Factoria
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-B lodel Robust Screening Design:

Augmentation by Optimal Design

y=XpB+e
95 1 1o
1 I
562 1 =
2 1 Lo
9410 = 1ot f-1 o
45 1 1o -1 o 3
00 L T
211 11 Lol \
vl g2 | X1 [ ST B
pi 1 I
0 1 Lol w
1 Lol tor
1 11| a
1 1o a
1 =Y
1 1t
Additional runs to make Choose additional uns to maximize
XX invertible PXX] ., D-optimal (Dyksira(1971))

Design and Anal

Criteria for Choosing Generators for Fractional Factorial Des
Augmenting Fractional Factorial Designs to Resolve Confounding
sckett-Burman and Model Robust Screening Design:

Change Factors to Numeric in New Data Frame

(arsrm3sa)-1.5)/.5

arsrmase)-1.5)/.5
srmasfold
data.fra

e(A.8

£,F,Block)




Auy\\ennm Fractional Fmom Dmgm to Resn\vp Conﬁwndmg

Use Federov Algorithm in AlgDesign Package to Find 8
Additional Runs that Maximize the Determinant

> library(Algbesign)
cande-gen. factortal(levels = 2. nVar = 6. varianes = c("'A",
Blocks-rep(*cand

64)
> cand<-data. frane(A=cand$A, B=cand$B, C=candSC, D=cand$D, E=cand$E, F=candSF,
+ Bloc
> a

—rbind(augmn, cand)
1:16

CA+BEFLIGD) + I(CP). datasall, nirials =24,
. NRepeats =10, augnent=TRUE, rows=fr)
sdesign[ 17:24, 1

F Block
-1 cand
-1 cand
-1 cand
-1 cand
1 cand

1
1 cand
1

tion: ns to Resolve Confounding

Piachert Burman ond Model Robust e e s

Plackett-Burman Designs Obtained by Cyclically Rotation

Table 6.9 Factor Levels for First Run of Plackett-Burman Design
Run Size | Factor Levels
D I ————

20 B e o e e o
24 bbbt bbb




falf-Fr | Factorial
One-Quarts her Fractions of

it rran v Model b Screening Designs

Creating a PB Design with FrF2

> library(Frf2)
> pb( nruns = 12, randomize=FALSE)

ABCDETFGHUJEKL
11-1 11 1-1-1-1 1-1
-1 1 1-1 11 1-1-1-11
1-1 1 1-1 1 1 1-1-1-1
“11-1 1 1-111 1-1-1
1-1 1 1-1 11141
“1-1-11-111-11 11
1-1-1-1 1-1
1 1-1-1-1 1-11 1-1 1
9 11 1-1-1-1 1-1 1 1-1
0-1 11 1-1-1-1 1-1 1 1
1 1-11 1 1-1-1-1 1-11
12-1-1-1-1-1-1-1-1-1-1-1
class=design, type= pb

PR
|
|

tion: ns to Resolve Confounding

Piachert Burman ond Model Robust e e s

Example use of a Plackett-Burman Design

Hunter et al. (1982) used a Plackett-Burman Design to study the fatigue life of weld-repaired castings.

Table 11 Design Mlri o Liftime Data for Cat Ftie Eperiment
Run | A B D EF G o8 ¢ cl0 cll




&
it rran v Model b e i

Recall the Design from the BsMD package

> data( PB12Des, package = "BSMD" )
> colnames(PB12Des) <- c(*'C: 10", "c9", “'c8
> castf <- PB12Des[c(11,10,9,8,7,6,5,4,3,2,1)]

> castf

A B CDE F Gc8c9clocll
1 1-11 1 1-1-1-1 1 -1 1
2 -1 11 1-1-1-11-1 1 1
3 11 1-1-1-11-1 1 1 -1
4 1 1-1-1-1 1-1 11 -1 1
5 1-1-1-1 1-1 1 1-1 1 1
6 -1-1-1 1-1 1 1-1 1 1 1
7 -1-1 1-11 1-11 1 1 -1
8 -1 1-1 1 1-1 1 1 1 -1 -1
9 1-1 1 1-1 1 1 1-1 -1 -1
10-1 1 1-1 1 1 1-1-1 -1 1
1 1 1-11 1 1-1-1-1 1 -1
12-1-1-1-1-1-1-1-1-1 -1 -1

t
u tion: rial Desi
PiachertBurman ond Model Robuet e e s

Analysis Shows only Factor F Possibly Significa

> y<-o(4.733, 4.625, 5.899. 7.0, 5.752, 5.6682,
© 6607, 5.518, 5.917, 5.863. 6,086, 4.808)
> castf<- cblnd(cas(f ) S
> modpb<-In(y- (.), data=castf) ?
7 Hibrary(dacur) .
> ef(nodpb) [2:12] =
> nanes (cfs)
> halfno:m(cf~ names, alpha = .35
+ i SE) o
R?=.55 g




Fractic igns to F

Augment | Factorial De e
Plackett-Burman and Model Robust Screening Designs

Partially Confounded Main Effects Allows Estimation of
Some Interactions by Regression

Figure 6.13 Color Map Comparison of Confounding between PB and FF Designs

FTC Short Course - Design and Analysis of

stor
torial Design:

I F t e ndin
Burman and Model Robust Screening Designs

Jones and Nachtsheim(2011) Propose a Forward Stepwise
Regression Algorithm Guided by Effect Heredity

@ Model matrix includes main effects and two-factor interactions

@ When an interaction enters as the next term in the model,
main effects involved in that interaction are included to
preserve effect heredity

FTC Short Course - Design and Analysis of Experiments with R




of Two Level Factora
tionsof T

u Fractional Factorial Designs to R
Plackett-Burman and Model Robust Sereening De

istep, fstep, bstep Functions in daewr Package Perform
this Algorithm - FG interaction first term entered

- des<—castf[ ., c(1:)]
> ye-castf[ .12]

)
> trme-hstep(y,des)

cani:
In(fornuta €. data = d1)

Residuals:
win 10 Median 3
049700 0.07758 0.026%0 0.07809 0.44500

Coefficients:
Estinate std. Ervor ¢ valuo Pritl)
(Intercept) 5.73025 0072 930
F 0.45758  0.07260
o
o

1 009158
.o -0.as875

07260 1.261 0.242669
07260 -6.319 0.000228 *++

Signif. codes: 0 ¥ 0.001 *+* 0.0L T 0.05 T 0.1 T 1

dual standard error: 0.2515 on 8 degrees of freedon
0.9104,  Adjusted R-squared: 0.8767
! oaon’s and’8 OF pevatue: 0-o00isa1

Design and Analysis of Exp

nerato
u tion: fial Desi R undin
PiachertBurman ond Model Robuet e e s

This Interaction was Detected with Forward Stepwise
Regression

Table 6.13 Summary of Data from Cast Fatigue Ezperiment

Factor F Factor G
- +

).899

E mED
5. 752

* 7.000
607




Alternative to Plackett-Burman when 16 Runs Needed

Jones and Montgomery (2010) have proposed alternate 16-run screening designs
for 6, 7, and 8 factors

> library(daewr’

ascr <-Altscreen(nfac = 6, randomize = FALSE)
head(ascr)
A B C

Vv

E
1
-1
-1
1
1
1

EXCESTTRNES
'
PR
|
A
phRbbeT

nfac =6, 7, or 8

tion: rial Design:
PiachertBurman ond Model Robuet e e s

Alternative to Plackett-Burman when 16 Runs Needed

Li and Nachtsheim (2000) also developed 8-, 12-, and 16-run model robust
screening designs.

brary(daewr
MR8 <~ ModelRobust(*MR8mSg2", randomize = FALSE)
head(VR8)

v

ERCENFRENEN




A F :
Plac creening Des

Main Effects Partially Confounded with Two-Factor
Interactions in These Designs

FTC Short Course - Design and Analysis of Experiments with R

Part VI

Experimenting to Find Optima

FTC Short Course - Design and Analysis of Experiments with R



Outline of Part VI

e Experimenting to Find Optima
@ Introduction
@ The Quadratic Response Surface Model
@ Design Criteria
@ Standard Designs for Second Order Models
@ Non-standard Designs
o Fitting the Response Surface Model
@ Determining Optimum Conditions
@ Split-Plot Response Surface Designs
@ Screening to Optimization

FTC Short Course - Design and Analysis of Experiments with R

Introduction

Response Surface Methods—A Package of Statistical
Design and Analysis Tools

@ Design and collection of data to fit an equation to
approximate the relationship between factors and responses

@ Regression analysis to fit a model to describe the data

© Examination of the fitted relationship through graphical and
numerical techniques

FTC Short Course - Design and Analysis of Experiments with R




(0] CundaticRt (20672 (<] CubicFit{R2=0680)

(9 Foth OrderFILE=0.723] ()it Order it (R2=0381) [ Egth Crder it €3=0.959]

FTC Short Course - Design and Analysis of

y=f(x1,22) +e (10.1)

f(@r,22) = f(z10,720) +

2 [T -

FTC Short Course -




The Quadratic Response Surface Model

(10.3)

where 8, '/,7‘ If the region of interest is of moderate

K i kK
y=00+ Y B+ Y Bual + 33 By e (10.4)
= =i &

The Quadratic Response Surface Model

Figure 101 Surfaces That Can Be Deseribed by General Q




1 k; and ky can be given as functions of temperature by the Arrhenius expressions

ky
[

8

Temperature, DegreesKelvin

10.2.2 Design Considerations

0.5 exp [-10,000 (1/7
0.2 exp [-12,500 (1/1

Yield of P, %

Time, hours

1/400)] and
1/400)],

Quadratic Model

where x' = (1,21, 22

y

2

Temperature, Degrees Kelvin

Vield of P, %

Design Criteria

Standard Desi

FTC Short Course - Design and Analysis of Exp:




Design Consideration for the Linear Model

Linear Model y =xb

o the design points are chosen to minimize the variance of the

fitted coefficients b = (X'X)' X'y, o%(X'X)"!

o design points should be chosen such that (X'X) matrix is diagonal

like the 2% 2%°7 designs diagonal elements of (X'X)~! minimized

FTC Short Course - Design and Analysis of

Design Consideration for the Quadratic Model

Var[y(x)] = o?x"(X'X) 1x

@ Goal is to equalize the variance of a predicted response over
the region of interest

@ Rotatable Design—variance of a predicted value is only a
function of the distance from design center

@ Uniform Precision Design—variance of predicted value is near
equal within radius of one in coded factor units

FTC Short Course - Design and Analysis of Experiments with R
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Central Composite Designs

10.3.1 Central Composite Design

Figure 10.2 Central Composite Design in Two and Three Dimensions

. . *
. o« - e .

. . $

. ’

.
J . R

. . Pl
. . 3

Factoral ConterPoints Axal Ponts

uadratic Resp

Standard Designs for Second Order Models
Optimizatio on-standard Design
ting the Response Surface Mk
termining Optimum C
Split-Plc r

UP Property of Central Composite Designs

Central Composite Design

X, %

1-1 -1

201 -1 Factorial Portion
34001

4.1 1

50 0} CenterPoints
6w 0

7 0 {

§ 0 o [ Axial Portion
90 o J

By choosing the distance from the orig

1 to the axial points (a in coded

units) equal to /F where F is the number of points in the factorial portion
of the design, a central composite design will be rotatable. By choosing the

correct number of center points the central composite design will have the
uniform precision property




uadratic Rest

Standard Designs for Sec
n-standard Design

Example

o vy Water/coment

L1685

Standard Designs for Second Order Models

> library(daeur)
> data(cenent)
des<—cenent[, 2:4]
> library(Vdgraph)
> Vdgraph(des

Variance Dispersion Graph

Radius  Naxinun  Mininun _Average
[1.1 0.00000000 3.3 3.326805 3.326805

[2,] 008660254 3320828 3.320828 3.320828 1

[3.] 0.17320508 3.303837 3.303837 3.303837

[4] 025080762 3.278540 3.278040 3278540 o

[5.] 034641016 3249923 3.20923 3.200923 £ _ |

[6.] 043301270 3224241 3.2242¢1 3. £-

[7.] 0'51961524 3210026 3.210026 3 H

[8.] 060621778 3217583 3.217563 3 R

[3.] 069282032 3.259089 3.259089 3. H

[10.] 0.77042280 3.348596 3.3485% 3 "1

[11,] 0-86602540 3.502020 3.502029 3 1

[12.] 0.95262794 3.737186 3.737186 3. N

[13] 1.03023048 4.073740 4.073740 4

[18.] 1.12583302 4.533236 4.533236 4 e . . .
[15.] 1:2124357 5.139093 5139093 5. o 05 o M
[16,] 1-29903811 5.916603 5.916603 5

[17.] 1.38564065 6.892034 6.892934 6 Radius

[18.] 1047224319 8.097125 8.097125 8.

[19,] 1.55884573 9.560089 9560089 ©




Standard Designs for Sec

Optimization ndard Design:
nse Surfas

> library(rsm)
> rotd <- ccd(3, n0 = c(4.2), alpha = “rotatable”, randomize = FALSE)
> rotd

run.order std.order x2.as.is
1 1 1 0 -1.000000
2 2 2 -1.000000
3 3 3 1.000000
4 4 4 10000
5 5 5 -1.000000 -1.000000
6 6 6 1.000000 -1.000000
7 7 7 -1.000000 1.000000
8 8 8 1.000000 1.000000
9 9 9 0.000000 0.000000
10 10 10 0.000000 0.000000
11 11 11 0.000000 0.000000
12 12 12 0.000000 0.000000
13 1 1-1.681793 0.000000
14 2 2 1.681793 0.000000
15 3 3 0.000000 -1.681793
16 4 4 0.000000 1681793
17 5 5 0.000000 0.000000
18 6 6 0.000000 0.000000
19 7 7 0.000000 0.000000
2 8 8 0.000000 0.000000

Standard Designs for Second Order Models
Optimizatio -standar

Design:

> library(rsm)
> ccd. up<-ced(y-x1+x2+x3,n0=c(4,2) ,alpl
+ x2~(Press-50)/5,x3~(Rate-4)/1) , randomiz
> head(ced. up)

run.order std.order Temp Press Rate y Block

rotatable”, cox
FALSE)

st(x1-(Tenp-150)/10,

1 40 A 1
2 2 160 45 3 NA 1
3 3 3 140 55 3 NA 1
4 4 4 160 55 3 NA 1
5 5 5 140 45 5 NA 1
6 6 6 160 45 5 NA 1

Data are stored in coded form using these coding formulas ...
1 )/10

x3 ~ (Rate - 4)/1




Standard D
Optimizat; on-standar
ting th

5

10.3.2 Box-Behnken Design

102 Box-Behnken Design in Three Factors
T 1 1 0
2 1 4 0 .
3010 .
fo1 10 . ¢
5o 0 - A
61 0 i |
T 01 i J J
81001 )’
90
00 1 )’ S
oo
1 :

Design and An:

Standard Designs for Second Order Models
Design:
Sonse Surface Moc
dptimum Cond

reate desion with rsn
Tibramy(ron
> b < a3, randonize=FALS
- Hibrary(vgrap) Variance Disparsion Graph
- Vdgeapnobdsl . 3:51) > "
nunber of deskgn points= 15
Munber of factors: 3 e
Radius Voxinun  Mininun  Average
[1.] 0.00000000 5.000000 5.000000 5000000
[21] 0.08600254 4.564477 4.964445 4.984458
[51] 017320508 4939125 4 036625 4.93s62
[41] 025960762 4.867602 4.965070 4500083
[51] 0.34642016 4.776000 4.768000 4772200
[61] 043301270 467205 4.653920 4661133
1717 0ls1901524 4 4520625 4 54483
[61] 0.60821778 4.470227 4.403105 4.433200
[9] 0.69202032 4416000 4.268000 4339200
1101 07794228 195605 4 277708
[117] 086002540 4.453175 4140625 4.265025
[127] 0omoca700 4.506s2 4130820 4 32183 -
[13.1 103923048 41200000 4.467200
[14] 1112563302 5.200108 4367570 4.724583
[i5/] 121243557 .99134 4.6362s 5.118625
[16,] 1129003811 o.625077 5043945 5676758
[17.] 138564065 7.656000 5608000 6.427200
[18]] 1ar22319 ©.o06077 6.350945 7.400958 -
[19.] 155864573 10.509125 7316625 .630625 T T T T
[20.] 1odsass27 12.595100 6520570 10.151569 @ o 10 s
{211 1173305061 15.000000 10000000 12.000000
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Small Composite Designs

10.3.3 Small Composite Design

ure 10.6 Graphical Comparison of CCD and Small Composite (with I = AB) for

uadratic Resp

Standard Designs for Second Order Models
Optimizatio on-standar

ting the Response Surface M

termining Optimum C

Hybrid Designs

10.3.4 Hybrid Design

Roquemore (1976) developed hybrid designs that require even fewer runs than

the small composite designs. These designs were constructed by making a
central composite design in k - 1 factors and adding a kth factor so that the

X'X has certain propertics and the design is near rotatable

Table 10.4 Roquemore 310 Design

run zy r2 r3
1 0 0 1.2006
2 0 0 -0.1360
3 -1 106386
1 1 -1 06356
5 -1 1 0638
6 1 10638
71736 0 -0.9273
N 6 0
9 0 L1736

10 0 -1.736




igns for Sec

Standard De:
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Minimal Run Response Surface Designs Available in R
package Vdgraph

Small Composite Designs:

Data Frame Nam n

SCDDLS s Tybrid

SCDI2 Roquemore’s hybrid design D311A
SCDH3 Roquemore’s hybrid

SCDH4 s hybrid design
SCDH5 quemore’s hybrid

SCDH6

s hybrid design Da16C
re's hybrid design DG25A

Hexagonal De
Data Frame N

Tex2 Tlexagonal Design in 2-factors

Description

uadratic Resp
Standard Designs for Second Order Models
Optimizatio on-standar
ting the Response Surface M
termining Optimum C
Split-Plc

Comparing Two Designs with Vdgraph

rary(rsm)
> ced. up<-ced(y-x1+x2+x3,n0=c(4,2) ,alph="rotatabl
+ x2~(Press-50)/5,x3-(Rate-4)/1) , randomi ze=FALSE)
> head(ccd. up)
run.order std.order Temp Press Rate y Block
1 140 45 3 NA 1

codin

st(x1-(Temp-150)/10,

160 45 3 NA
140 55 3 NA
160 55 3 NA
140 45 5 NA
160 45 5 NA

EXFNTINYS
curwNE
EXFNTIN

Data are stored in coded form using these coding formulas ...
X1 ~ (Temp - 150)/10

x2 ~ (Press - 50)/5

x3 - (Rate - 4)/1




uadratic Rest

Standard D

> library(vdgraph)
> data(0310)

0.0000 1.736
0 0.0000 -1.736

> Conpare2vdg(des[. 4:6].ccd.up[. 3:51."D310

0.6385
06386
0.6385

-0.8273

“0.9273

-0.8273

“0.0273

0°x1+150,

150.000
150_000

Press=s®

X2+50, Rate=x3+4)

Standard Designs for Second Order Models

Variance Dispersion Graph

Scalea Varianca
16405 26405 30405 40405 50405

— Roccotr)

H




nd Order Model

Optimization | Non-standard Designs

Standard Designs Inappropriate in Some Situations

10.5 Non-Standard Response Surface Designs

Some design situations do not lend themselves to the use of standard response

surface designs
1. Region of experimentation is irregularly shaped

2. Not all combinations of factor levels are feasible

3. There is a nonstandard linear or nonlinear model

ndard Designs for Second Or
Optimizatio Non-standard Designs
ting the Response Surface M

Irregular Design Regions

Example | - Irregularly shaped region

Figure 10,11 Experimental Region for Engine Esperiment
;
0s
Eoo
o
0
w0 W

05 00 05
X, Spark Advance




Optimizatio

Design and Anal

> library(daeur)
> data(gsar)

brary(Algbesign)

> desgnl<-optFederov(~quad(.) .

=qsar,nTrials=15, center=TRUE,
.nRepeats=40)

+ crite
> desgn2<-optFederov(-quad(. ) ,dat: TRUE,
. criterion="1"
> desgn2sdesign
Conpound HE DMz SOK
1-12.221 -0.162 64.138
2 4-12.893 1.035 96.053
9 9 -11.813 1.219 77.020

36 36 -11.868 -1.322 107.010




Non-standard Desi
ting th

Compare the D-Optimal and I-Optimal Designs for the
Quadratic Model

> library(vdgraph)
€2FDS(d

> Conpare2FDS(desgniSdesign, desgn2sdesign, “D-optimal”, “I-optinal”, nod=2)
- [ oo
00 02 04 08 08 10

Standard Design:

Example 3 - Nonlinear model

Figure 10.14 Diag

FTC Short Course -



Standard Designs for Second Order Model
Optimization | Non-standard Designs

Design Strategy

For the compartment model in Equation (10.7)
O _ okatamto) _ gokatamto)
M
of ket (x=to)
= oz - to)e ket
Dhey ( )
of ka(=to)
I oy -tg)ehateto
By - 0l o)
O _ | kyetrtato) Ka(o-to)

oty 2
The strategy is to create a grid of candidates in the independent variable X, calculate
the values of cach of the four partial derivatives using initial guesses of the parameter
values at each candidate point, and then use the optFederov function in the AlgDesign
package to select a D-optimal subset of the grid.

Optimizatio Non-standard Designs
ting the Response Surface M
termining Optimum Cond
Split-Plot Response Surface Design:
Screening to Optimi:

Create the Design in R

k1 < 15; k2 <- .72; gamma0 <- 2.65; t0 <- 0.41
X <= L(JLq(l 25))
dfdkl <- c(rep(0, 25))
dfdkz <- c(rep(0, 25))
dfdgama0 <- c(rep(0, 25))
dfdto <- c(rep(0, 25))
for (i in 1:25)

ALY < -3 v gem0 * ekl 1] - 1) O] - )

drdkeli] <gama0 * (ke * (LIl - 1) * GIIl -

dfdgamaoli] < (ki * (il - ) opC k2 * i - o

0131 < gamad * oxpCkl * (il - ©0)) * ki - gamnao *
A I

orid < anea. fuamelx, GfORL, GG, dFdgamna0, dfdto)
library(AlgDesign)
Jerov(--1+dfdk: +dfdt0, data=grid,nTrials=4,center=TRUE,
,MRepeats=20)

dfdk2  dfdganma0 dfdto
-1.431076 1.022374e+00 0.26140256 -0.883809267
-3.319432 1.341105e+00 0.46952112 -0.294138728
-6.110079 4.464802e-01 0.46562245 0.129639675
-1.629706 1.333237e-06 0.02500947 0.009941233

pan e




Optimizati Design:
Fitting the Response Surface Model
i

o vy Water/coment

010 0100 170

L1685

adratic Res
Standard Designs for
Jon-standard Design
Fitting the Response Surface Model

> library(daeur)
> data(cerent)

Block  vatCen  BlackL sy

1 0.3300000 08000000 109.5

L1 0.3300000 0.12000000 0
Cllz 1013500000 012000000 0.0B000000 117.0

€13 103300000 018000000 0.08000000 110.5

CLia 103500000 015000000 0.08000000 121.0

€15 1013300000 012000000 0.12000000 120.0

c1.6 1 0.3500000 0.12000000 0.12000000 130.0 Factorial plus
CL'7 103300000 013000000 0 12000000 124.0 centerpoints
CL'8 1013500000 018000000 0.12000000 132.0

CL'S 1013400000 015000000 0.10000000 117.0

€110 1013400000 015000000 010000000 117.0

CLI11 1 03400000 015000000 0.10000000 115.0

212 03231821 0.15000000 010000000 109.5

S22 203568179 0.15000000 0.10000000 132.0

23 2 03400000 0.09954622 0.10000000 120.0

214 2 03400000 0 20045378 0.10000000 121.0 Axial points
25 2 03400000 0.15000000 0.06636414 115.0 plus centerpoints
$26 2 03400000 0.15000000 0.13363586 127.0

27 2 03400000 0 15000000 010000000 116.0

28 2 03400000 0.15000000 010000000 117.0

$29 2 03400000 015000000 0010000000 117.0

Data are stored in coded form using these coding formulas -

X1 - (atCen - 0.34)/0.01

X2 ~ (BlackL - 0.15)/0.03
X3 - (S - 0.)/0.02

Design and Anal




ndard Designs for Second Order Model

Optimizati on-standard Design
Fitting the Response Surface Model

Fit Linear Model-Block 1

> tibrary(rsn)

> grout. Tin <- rsn(y ~ SO(x1, x2, x3),data = cenent, subset = (Block

Warning nessage:

In rsn(y - SO(x1, x2, x3), data = cenent, subset = (Block
ased - cannot use *rsm® methods.

Analysis of Variance Table

Response: y

Sun Sq Nean Sq F value  PresF)
FO(x1, x2, X3) 3 465.13 155.042 80.3094 0.002307 **
TWI(x1, x2, x3) 3 0.25 0.083 0.0432 0.985889
PO(x1, x2, x3) 1 37.88 37.879 19.6207 0.021377 *
Residuals 3 579 1.e31

Design and Anal

ndar
Jon-standard Design
Fitting the Response Surfa

Tibrary(daear)
data(cenent)

grout.quad <- rsm(y - Block + SO(x1.x2.x3). data = cement)
surmary(grout.quad)

cal
rsn(fornut, ck + SO(x1, X2, x3), data = cement)

Estirate Std. Error t value Prelt]
(Intercept) 1.1628e+02 1.0691e=00 108.7658 2.383e-15 ***
Block2 4.4303¢ 02030400 0.4351 7375
5.40680+00 6.1057e-01 8
9.2860e-01 6.1057e-01 1

4.09250+00 6.1057e-01 8

1.25000-01 7.9775e-01 O

-1.3443e-14 7.9775e-01 0.0000  1.00000
1.25000-01 7.9775e-01 O

1.41350+00 5.9582e-01 2

1.3251+00 5.9582e-01 2

1.50190+00 5.9582e-01 2

. 322 .
5207 0.03273 *

0 “*%+* 0.001 ** 0 0.05 ¢.7 0.1 T 1

Adjusted R-squared: 0.8887
F. p-value: 0.0001414

le R-squared: 0.9473,
:716.17 on 10 and 9 OF




Fit Quadratic Model-All Data

Analysis of Variance Table

Response: y

Block

FO(X1, x2, x3)
TWI(x1, X2, x3)
PQ(x1, X2, x3)
Residuals

Lack of fit
Pure error

brary(rsm)

ontour(grout.quad,

9

rOOowLwWR S

sum Sq Mean Sq F value  Pr(>F)
0.00 0.003 0.0006 0.98068

751.41 250.471 49.1962 6.607e-06
0.25 0.083 0.0164 0.99693
71.45 23.817 4.6779 0.03106
45.82  5.091

42.49  8.498 10.1972  0.02149
3.33  0.833

ting the Response Surface
Determining Optimum Conditions
Sl sonse Surface Desi

- XL+x2+X3)

fodel




he Response Surface Model
ing Optimum Conditions
Res urface D

t

> par(nfrow=c(1,3)
> persp(grout.quad, ~ x1+x2+x3, zlab=

“Work", contours=list(z="bottom"))

b 05 gagen

Sioa uSNF =01

ting the Response
Determining Optimum Conditions
Split-Plot R Surfac

Cannonical Analysis

10.7

2 Canonical Analysis

y=xb+xBx

where x' = (1, )b = ()
B e

Stationary point  xo = -Bb/2 5

Maximum? Minimum? or Saddlepoint?

Figure 10.18 Representation of Canonical System with Translated Origin and Ro-

tated A
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Optimization \

onse Surfa
Determining Optimum Conditions
i sponse Surface Designs

Cannonical Analysis

Stationary point of response surface:
x x: x:
-1.9045158 -0.1825251 -1.6544845

Stationary point in o al uni

atCem BlackL SNF
0.32095484 0.14452425 0.06691031
Eigenanalys

$values
[1] 1.525478 1.436349 1.278634

$vectors

Optimizatio

mum Conditions
Surface Design:

Ridge Analysis

10.7.3 Ridge Analysis
maximum or minimum of y = xb + x'Bx
subject to  x'x = R?
The solution is obtained in a reverse order using

Lagrange multipliers. The resulting optimal coordinates are found to be the
solution to the equation

(B - pul)x

-b/2. (10.12)




Optimizatio

sponse Surface Model
ing Optimum Conditions
Response Surface Designs

Ridge Analysis

Figure 10.19 Path of Marimum Ridge Response Through Experimental Region
B

Design and Anal

e M
itions.
Desigr

st=seq(0, 1.7, by=.1),descent=FALSE)
steepest ascent fron ridge analysi

watCem BlackL  SNF | yhat
0.34000 0.15000 0.10000 | 116.280
0.34073 0.15039 0.10134 | 117.036
0.34145 0.15078 0.10270 | 117.821
0.34218 0.15117 0.10406 | 118.641
0.34290 0.15159 0.10540 | 119.481
0.34362 0.15201 0.10676 | 120.355
0.434 0.082 0.406 | 0.34434 0.15246 0.10812 | 121.261
0.505 0.096 0.475 | 0.34505 0.15288 0.10950 | 122.194

|
0.000 0.000 0.000 |
1
I
I
]
I
I
I
0.577 0.112 0.543 | 0.34577 0.15336 0.11086 | 123.160
]
1
I
1
]
1
1
I
1

0.073 0.013 0.067
0.145 0.026 0.135
0.218 0.039 0.203
0.290 0.053 0.270
0.362 0.067 0.338

0.648 0.127 0.611 | 0.34648 0.15381 0.11222 | 124.147
0.719 0.143 0.680 | 0.34719 0.15429 0.11360 | 125.172
0.790 0.159 0.749 | 0.34790 0.15477 0.11498 | 126.227
0.861 0.176 0.818 | 0.34861 0.15528 0.11636 | 127.313
0.931 0.192 0.887 | 0.34931 0.15576 0.11774 | 128.419
1.001 0.209 0.956 | 0.35001 0.15627 0.11912 | 129.557
1.071 0.227 1.025 | 0.35071 0.15681 0.12050 | 130.725
1.141 0.244 1.095 | 0.35141 0.15732 0.12190 | 131.930
1.211 0.262 1.164 | 0.35211 0.15786 0.12328 | 133.158

ige
€
0
1
2
3
.4
5
6
7
-8
9
0
1
2
3
4
5
6
7
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Optimization

Determining u.mmum Conditions
it Designs

> par (nfrow=c(2,1))
> leg. txt<-c("W/C"

"radius”,ylab="Max. Predicted")
adius”, ylab="Factors")

Vv

ges:
Iegend(l 1,.31,leg. txt, Ity=c(1,2,3))

v

M Prcicted
0 s 10

s e

Optimizatio

Split-Plot Response Surface Designs

Split-Plot Response Surface Designs

Table 10.9 Data for Cake Baking Experiment
Ovenrun @ 2y

1 27

1 1125

10 27

1129

2 11 13

2 10 22
replicate blocks 3
with the same setting 3
for the whole plot ————» 1
factor allow estimation |
of,? i




Loading required package: Matrix
Loading required package: Rcpp
> library(daewr)
fron *package: Imed” :

cake

> dum(uuke)
> cake

Ovenrun x1 x2 y xisq x2sq
1 1-1-127 1 1
2 1-1 125 1 1
3 1-1027 1 0
a 2 1-129 1 1
5 21113 1 1
6 21022 1 0
7 30-137 0 1
8 30129 0 1
9 40029 0 0
10 40028 0 0
11 40029 0 o0
> mmod <- Imer(y ~ x1 +x2 +x1:x2 +x1sq + x2sq +(1]Ovenrun), data=cake)

Design and Analysis of Exp

ndi
SpltPlot Respor Designs

Differences in REML and Least Squares Estimates

Table 1010 Comparison of Least Squares and REML Estimates for Split-Plot Re-
sponse Surface Experiment

Least Squares (rsm function) ~ REMI (Imer function)
Factor 3 s; P-value 3 s P-value

[intercept. 0.1000 <.001 3.1312 0.054
Subplot 1 0.0795 0.026 -0.2500 0.399
factor 0.0795 0.003 -0. 3 <.001

0.002 -0.6835 0.3758 0.143
0.016 -0.0965  0.0432 0.089
0.268 -0.3500  0.0250 < .001
2 =0.1402, 67 = 0.0025




Split-Plot Respons:
: t

Estimation Equivalent Split-Plot RS Design (EESPRS)

Least Squares (rsn function)  REMI (Imer function)

Factor 3 s P-valuc 3 sy Pvalue
Tntercept 2979 0.1000 001 31312 0.2667 0054
n 0.2500  0.07 0026 -02500 02656 0.399

r 04333 0003 -0.4333 00200 <.001

3 06074 00223 0002 06835 03758  0.143
01526 00223 0016 -0.0065 0.0432  0.080
rirs 03500 0.0973 0268 -0.3500  0.0250 < .001
01102, 57 = 0.0025

y=X3+e
fe =(X'X) Xy

EESPRS fis= e i (Lo = X(X'X)T'X)IX) = Oy

Plot Response Surf
S i

Jones and Goos(2012) D-efficient (EESPRS)

Table 10.15 daewr Functions for Recalling Jones and Goos’s D-Efficient EESPRS
Designs

Number of ~ Number of

Whole-Plot  Split-Plot

Function Name Factors Factors
EEwis1 1 1
EEw1s2 1 2
EEw1s3 1 3
EEw2s1 2 1
EEw2s2 2 2
EEw2s3 2 2
EEw3 3 2or3




nd Order Model

Optimization g
onse Surfa

Optimum Condit
Split-Plot Response Surface Designs

Creating a Design with daewr package

> library(daewr) > EEW2S3("EE21RTWP
> EEw2s30 WP Wl w2 s:
10101 1
catalog of D-efficient Estination 2 111
Equivalent RS 3 111
esigns for (2 wp factors and 3 sp 4 201
factors) 5 201
6 20 1
Jones and Goos, JQT(2012) pp. 363-374 7 310
8 3-10
Design Nare whole plots sub-plots/ahole 9 310
plot. 1004 1-1
o4 1-1-1
EE21R7UP 7 3 12 4 1-1
EE24RENP 8 3 1351 1
EE28RTIP 7 a @ 5.1 1
EE32RENP 8 4 15 5-1 1
EE35R7UP 7 5 6 6 10
EE4ORBUP 8 5 17610
EE42RTIP 7 6 1610
EE4BREWP 8 6 19 7 -1-1
20 7-1-1
o retrieve a design type 21 711

EE2u3s("EE21RTWP") etc.

Optimizatio

Screening to Optimizat

One-Step Screening to Optimization

0% 7 ‘% s 5 ,"‘% 100
O 2 $
— Y~ — Y ————
K KAy K
. . .
Preliminary Screening Effect Optimization
Exploration Factors Estimation

Definitive Screening Design

o Jones and Nachtsheim(2011, 2013)
o 3-level designs
@ 2k+1 runs for k factors




>library(daewr)
> DefScreen(8)

ing to Optimization

Definitive Screening Designs Are Model Robust

Figure 6.17 Color Map of 1

n DSD for 8 Quantitative Factors




nd Order Model

Optimization

Screening to Optimization

Example of a Definitive Screening Design

Factors in the Definitive Screening Experiments of TiOy Synthesis

Table 1:

Label  Factor

Y Speed of Hz0 addition

B Amount of HoO

C Drying Time

D Drying Temperature

E Calcination Ramp

F Calcination Temperature
G Calcination Time

H Dopant Amount

Design and Anal

Optimizatio

Analysis using ihstep, fstep in daewr package

> des<-DefScreen(8)
> pd<-c(5.35.4.4,12.91,3.79,4.15,14.05,11.4.4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,
+8.1,5.35)

hstep(pd, des)

y - (), data = d1)

Residuals:

in 1Q Median 30 Max
-5.0201 -0.8301 0.0814 1.0299 3.6799

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept)  7.2194 0.5140 14.045 4.89e-10 ***
F 3.1508  0.5664 5.563 5.43e-05 ***

©ww%7 0,001 “**7 0.01 **7 0.05 .7 0.1 ° 1

f. codes: 0
2.119 on 15 degrees of freedon

Residual standard error:
R-squared: 0.6735,  Adjusted R-squared: 0.6518

ul
F-statistic: 30.94 on 1 and 15 DF, p-value: 5.429e-05
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Analysis using ihstep, fstep in daewr package

> trm<- fhstep(pd, des, trm)
In(fornula = y - (.), data = d2)

10 Nedian 3 Max
_2.8341 ~1.0214 -0-2049 0.5104 2.878

stimate Std. Error t value Pr(>|t])
(Intercept)  5.0333 1.0345  4.865 0.000309 ***
F 1508 0.4789  6.579 1.77e-05 ***
A 0.7664  0.4789  1.600 0.133553
A2, 2.6545 1.1400  2.328 0.036668 *

gnif. codes: 0 “**** 0.001 ***" 0.01 *** 0.05 *.% 0.1 * * 1

Residual standard error: 1.792 on 13 degrees of freedon
lultiple R-squared: 07977, . Adjusted R-squared:  0.751
17.09 on 3 and 13 DF, p-value: 8.501e-05

F-sta

Design and Anal
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Analysis using ihstep, fstep in daewr package

> trm <-fhstep(pd, des, trm)

call:
In(fornula = y - (.), data = d2)

Residuals:
Vedian 30 iax
_2.8080 -0.6378 09167 0.6708 2.4451

Coefficients
Estinate Std. Error t value Pr(>1t])
(Intercept) 5.0333  0.9280  5.424 0.000154 ***
F 3.1508  0.4206 7.335 9.0de-06 ***
0.7664  0.4206 1.784 0.099715 .
2.6505  1.0226 2.596 0.023407 *
018758  0.4296 -2.039 0.064137

codes: 0 “A**" 0.001 “A** 0.0L “** 0.05 .7 0.1 ¢ * 1

Residual standard error: 1.607 on 12 degrees of freedon
Wultiple R-squared: 0.6498,  Adjusted R-squared: 0.7997
Fstatict on 4 and 12 DF, p-value: 7.013e-05




Final Results

Pore Dismeter = 5.

Figure 13.5 Contons

Recommendations for DSD (Jones)

o Add two dummy factors to create a design with 2k+4 runs for
k factors

o Add replicate center points

@ Analyze by first fitting the model that includes linear and
quadratic main effects only (this leaves at least 4 df for error)

o Eliminate insignificant terms and fit the full quadratic model
to the remaining terms

FTC Short Course - Design and Analysis of Experiments with R
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