

FTC Short Course - Design and Analysis of Experiments with R

John Lawson

Department of Statistics - BYU

today

Outlines

Outline of Part I

- Preliminaries
- Program Interface
- R packages
- Code and Data from The Book

Outlines

Outline of Part II

- Introduction
- Preliminary Exploration
- Screening Factors
- Effect Estimation
- Optimization
- Sequential Experimentation

John Lawson FTC Short Course - Design and Analysis of Experiments with

Outlines

Part III: Design and Analysis of Two-Level Factorials

Outline of Part III

Design and Analysis of Two-Level Factorials

- Two-I evel Factorials
- The Justification for Two-Levels
- · Creating and Analyzing Two-Level Factorials with R
- Blocking Two-Level Factorials · Restrictions on Randomization - Split-Plot Designs

Outlines

Outline of Part IV

- Introduction
- One-Factor Designs
- Two-Factor Designs
- Staggered Nested Designs for Multiple Factors
- Graphical Methods to Check Assumptions
- Chemistry Example

Outlines

Outline of Part V

- Introduction
 - Half-Fractions of Two-Level Factorial Designs
 - · One-Quarter and Higher Fractions of Two-Level Factorial Designs
 - Criteria for Choosing Generators for Fractional Factorial Designs
 - · Augmenting Fractional Factorial Designs to Resolve Confounding
 - Plackett-Burman and Model Robust Screening Designs

- Experimenting to Find Optima
 - Introduction
 - The Quadratic Response Surface Model
 - Design Criteria
 - Standard Designs for Second Order Models
 - Non-standard Designs
 - Fitting the Response Surface Model
 - Determining Optimum Conditions
 - Split-Plot Response Surface Designs
 - Screening to Optimization

Part I

R - An Environment for Data Analysis and Graphics

Outline of Part I

- R An Environment for Data Analysis and Graphics
 - Preliminaries
 - Program Interface
 - R packages
 - Code and Data from The Book

R Basics

Preliminaries

A Short Description of R

- · R is the language of choice for a large and growing proportion of people developing new statistical algorithms
- R is available under GNU General Public License for Windows. Mac OS X. and Linux
- R is extendable with user submitted packages
- The Comprehensive R Archive Network (CRAN) makes it easy to benefit from others work, and share your own work and get feedback for improvements
- There are many user written packages available for the Design and Analysis of Experiments

Websites for Help Getting Started with R

- The R Project for Statistical Computing https://www.r-project.org
- · Getting Started with R http://data.princeton.edu/R/
- A Short Tutorial http://math.usask.ca/~longhai/doc/others/R-tutorial.pdf
- An Introductory pdf Manual can be Obtained Here https://cran.r-project.org/doc/manuals/R-intro.pdf

4 D 3 John Lawson FTC Short Course - Design and Analysis of Experiments with R

R Basics

Preliminaries

Websites for Help Getting Started with R

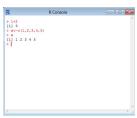
- Installing and using R packages http://math.usask.ca/~longhai/software/installrpkg.html
- R Packages for Design an Analysis of Experiments https://cran.r-project.org/web/views/ ExperimentalDesign.html

During an R session R Creates Entities known as Objects

- Variables
- Arrays of numbers
- Character strings
- Functions
- · Data frames and other more complex elements built from earlier components

Command line prompt >

Type commands and see text results immediately


John Lawson FTC Short Course - Design and Analysis of Experiments wi

4 D 3 4 D 3

Command line Examples

Expressions and Assignments

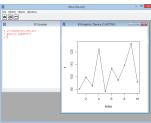
Do calculations or make assignments

John Lawson FTC Short Course - Design and Analysis of Experiments with R

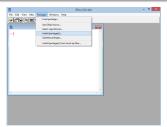
R Basics

Preliminaries Program Interface

The R Script


Running Commands from an RScript

R Basics


Preliminaries Program Interface

Making a Plot in R


Installing an R Package

R Basics

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Loading an R Package

Preliminaries
Program Interface
R packages

Documentation for an R Package

Package Documents

Document functions and data frames available in the package

2.0 0.0

Phononic

The new Epri. Len.
This produce content full factorial disages and designs from orthogonal arrays. In addition, it provides some basic calcles like an expert factories for the Dell' purkages 1972, Dell' reapper and Econd

Saction for the Debt publisher FOT, Debt Frapper and KonndOffing a Debt, and some diagnosis to govern orthogonal armys (govern ord heigh disclassions). Sebesia

in packing to that in the conjugate paper and the first packing to the control of the control of

applied or shall district the chappe was the extra plant the method has not refer that the chappe of the chappe with the chappe with the chappe was the chappe with the chappe

Acknowledgments

Thesis are due to Price Thresion Wilesis for various sardial suggrations?

Author(s)

Doll beer parkage (Doll beer)

→ → → □ → → □ → → □ → → □ → → □ → → □ → → □ → → □ → → □ →

R Basics Pro

Preliminaries Program Interfac

Data from The Pools

Documentation for a Function

Function Document

fact.design function in DoE.Base Package fac.design Function for full factorial designs

Description

Function for creating full factorial designs with arbitrary numbers of levels, and potentially with blocking

Usage

fac.deaign(nlevels=MRLL, nfactors=MRLL, factor.nemes = NULL,
 replications=1, repeat.only = FALSE, randomize=TRUE, seed=MRLL,
 blocks=1, block.gen=MULL, block.neme="Blocks", bbreps=replications,
 wbreps=1, block.old.behavior=FALSE)

Argument

nlevels mumber(s) of levels, vector with nfactors entries or single number; can be omitted, if obvious from factor. names number of actors, can be omitted if obvious from entries nlevels or factor. names

4 D > 4 B > 4 E > 4 E > - E - 40 9 0

Example Code in Function Documentation

Function Examples

fact.design function

Examples of

- ## only specify level combination
- ## design requested via factor names
- ## design requested via lactor.names fac.design(factor.names=list(one=c("a","b","c"), two=c(125,275), three=c("old","new"), four=c(-1,1), five=c("min","medium","max"))) ## design requested via character factor.names and nlevels
- fac.design(factor.namesmc("eins", "zwei", "drei"), nlevelsmc(2,3,2))

- fac.design(nlevels=c(2,2,3,3,6), blocks=6, seed=12345) ## the same design, now unnecessarily constructed via option block.gen
 ## preparation: look at the numbers of levels of pseudo factors
- ## (in this order)
 unlist(factorize(c(2,2,3,1,6)))
- ## or, for more annotation, factorize the unblocked design factorize(fac.design(nlevels=c(2,2,3,3,6)))
- ## positions 1 2 5 are 2-level pseudo factors ## positions 3 4 6 are 4-level pseudo factors
- $G \leftarrow rbind(two=c(1,1,0,0,1,0),three=c(0,0,1,1,0,1))$ plan.6blocks <- fac.design(nlevels=c(2,2,3,3,6), blocks=6, block.gen=G, seed=12345) plan. 4blocks

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

R Basics

Running a function in a loaded package (DoE.Base)

Preliminaries
Program Interface
R packages
Code and Data from The Bo

User written R packages illustrated in the book

AlgDesign, agricolae BsMD car crossdes daewr, DoE.base effects FrF2 GAD, gdata, gmodels leaps, lme4 mixexp, multcomp nlme rsm

4 D > 4 M > 4 B > 4 B > B + 99 0

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminaries Program Interface

R Basics

Website for the book

https://jlawson.byu.edu

Design and Analysis of Experiment Books written by Dr John Lawson

Code examples in the book

Code and Data

Code: Web page Data: daewr package

R Code Examples

R Examples for Chapter 2

R Examples for Chapter 3 R Examples for Chapter 4

R Examples for Chapter S

R Examples for Chapter 6

R Examples for Chapter 7 R Examples for Chapter 8

R Examples for Chapter 9 R Examples for Chapter 10

R Examples for Chapter 11

R Examples for Chapter 12 R Examples for Chapter 13

C25 C25 2

FTC Short Course - Design and Analysis of Experiments with R

R Basics

R Code for Chapter 2

R Examples for Chapter 2

```
← → C 🖁 https://jlawson.byu.edu/RBOOK/RCode/Chapter2.R 🏠 😗 🗏
# Exemple 1 p. 18
set.seed/5289 |
f <- factor (rep ( c(5, 40, 45 ), each * 4))
f cc <- sample ( f, 12 )
plan <- data frame ( loaf = cu, time - fac )
prints.csv( plan, file * "Plan.csv", row.cames = FALSE )
# Example 2 p. 23
bread <- read.csv("Plan.csv")
# Example 3 p. 24
rm(bread)
library(daewr)
mod0 <-lm( height ~ time, data = bread )
sunmary (mode)
fit.contrast (mod0, "time", c(1, -1, 0) )
```


Part II

A Context for Discussing Experimental Designs

John Lawson

FTC Short Course - Design and Analysis of Experiments with I

Strate

Outline of Part II

- A Context for Discussing Experimental Designs
 - Introduction
 - Preliminary Exploration
 - Screening Factors
 - Effect Estimation
 - Optimization
 - Sequential Experimentation

Strategy

Strategy for Experimentation

Present U				Goal		
	0%		Knowledge	,	100%	
Objective:	Preliminary Exploration	Screening Factors	Effect Estimation	Optimization	Mechanistic Modeling	
No. of Factors		5 - 20	3 - 6	2 - 4	1 - 5	
Purpose:	Identify Sources of Variability	Identify Important Factors	Estimate Factor Effects + Interactions	Fit Empirical Model Interpolate	Estimate Parameters of Theory Extrapolate	

R.D. Snee "Raise Your Batting Average" Quality Progress Dec. 2009 402 402 422 422 2 990

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Strategy

Preliminary Exploration

- Exploratory experiments to study repeatability of the process
- · Identify process steps causing majority of the variability in results
- Identify factors that possibly affect the results

Screening

- Explores a large number of factors
- Objective is to identify smaller subset of most important factors
- Fit linear models to the data

- Explores the relationship between results and important factors
- · Goal is to estimate linear effects and interactions and develop a prediction model
- Fit models including linear effects and interactions

Optimization

- Explores the relationship between results and a limited number of quantitative leveled factors
- · Goal is to identify optimum operating conditions within the factor ranges studied
- Fit quadratic response surface models

Strategy

Sequential Experimentation

Sequential Experimentation

- Plan Ahead decide on a series of experiments that may be needed
- · Consider All Possible Factors majority of variation is caused by a subset of factors, but which ones?
- Don't Spend All Resources on a Single Experiment

Possible Sequences

- Preliminary Exploration Effect Estimation
- Preliminary Exploration Optimization
- Screening Effect Estimation Optimization

Part III

Design and Analysis of Two-Level **Factorials**

Outline of Part III

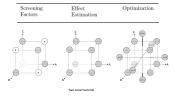
Ossign and Analysis of Two-Level Factorials

- Two-Level Factorials
- The Justification for Two-Levels
- · Creating and Analyzing Two-Level Factorials with R
- Blocking Two-Level Factorials
- · Restrictions on Randomization Split-Plot Designs

Design and Analysis of Two-Level Factorials

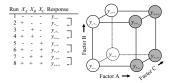
Why start discussion with two-level factorials?

	Present ↓			Goal ↓		
	0%		Knowledge	•	100%	
Objective:	Preliminary Exploration	Screening Factors	Effect Estimation	Optimization	Mechanistic Modeling	
No. of Factors		5 - 20	3 - 6	2 - 4	1 - 5	
Purpose:	Identify Sources of Variability	Identify Important Factors	Estimate Factor Effects + Interactions	Fit Empirical Model Interpolate	Estimate Parameters of Theory Extrapolate	


Two-Level Factorials

Why start discussion with two-level factorials?

Screening Factors	Effect Estimation	Optimization
	Two-Level Factorial	


Design and Analysis of Two-Level Factorials

Why start discussion with two-level factorials?

Effect estimation in two-level factorials

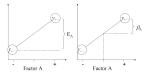
Figure 3.10 Geometric Representation of 2³ Design and Main Effect Calculation

$$E_4 = (y_{+-} + y_{++} + y_{++} + y_{++} + y_{++})/4 - (y_{--} + y_{-+} + y_{-+} + y_{-+} + y_{-+})/4$$

FTC Short Course - Design and Analysis of Experiments With

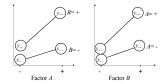
Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two


Creating and Analyzing Two-Level Factorials with Blocking Two-Level Factorials Restrictions on Randomization - Split-Plot Designs

Relation between effect and regression coefficient

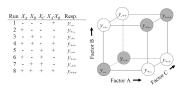
Figure 3.9 Effect and Regression Coefficient for Two-Level Factorial


Coded Factor Levels for factors with quantitative levels

 $X_A = \frac{\text{(factor setting - mid setting)}}{\text{(high setting - low setting)/2}}$

Definition of interaction effect

Figure 3.11 Definition of an Interaction Effect for Two-Level Factorial



100 - 12 - 12 - 2 - 990

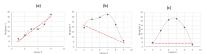
Design and Analysis of Two-Level Factorials

Calculation of interaction effect

Figure 3.12 Geometric Representation of 2³ Design and Interaction Effect

 $E_{\rm AB} \! = \! (y_- \! + \! y_{+\!\!-} \! + \! y_{-\!\!-} \! + \! y_{+\!\!-})/4 - (y_+ \! + \! y_+ \! + \! y_{+\!\!-} \! + \! y_{-\!\!-})/4$

Number of experiments


Number of Experiments Required for a Full-Factorial

	Nur	nber o	f Levels
Number of Factors	2	3	4
2	4	9	16
3	8	27	64
4	16	81	256
5	32	243	1024

Design and Analysis of Two-Level Factorials

Choice of Levels

- · Factors with Qualitative Levels
- · Factors with Quantitative Levels

Creating a two-level factorial design with R FrF2

Problem 9 Chapter 3 of "Design and Analysis with R"

9. Nyberg (1999) has shown that silicon nitride (SiNx) grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) is a promising candidate for an antireflection coating (ARC) on commercial crystalline silicon solar cells. Silicon nitride was grown on poished (100)-ciented 44 silicon wafers using a parallel plate Plasma Technology PECVD reactor. The diameter of the electrodes of the PECVD is 24 cm and the diameter of the shower head (through which the gasse enter) is 2A. The RF frequency was 13.56 MHz. The thickness of the silicon nitride was one-quarter of the wavelength of light in the nitride, the wavelength being 640 mm. This wavelength is compared to the control of the control of the property of the proper

107107167167 6 1940

John Lawso

FTC Short Course - Design and Analysis of Experiments with

Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials

Creating a two-level factorial design with R FrF2

Exercise data

Creating a two-level factorial design with R FrF2

- > library(FrF2)
- > Design.p9 <-FrF2(nruns=32, nfactors=5, blocks=1, ncenter=0, replications=1,
- + randomize=FALSE, factor.names=list(Ratio=c(0.1,0.9),Gas_flow=c(40,60),
- + Pressure=c(300,1200),Temperature=c(300,460), Power=c(10,60)))
- creating full factorial with 32 runs ...
- > y1<-c(1.92,3.06,1.96,3.33,1.87,2.62,1.97,2.96,1.94,3.53,2.06,3.75,1.96,3.14,2.15, + 3.43,1.95,3.16,2.01,3.43,1.88,2.14,1.98,2.81,1.97,3.67,2.09,3.73,1.98,2.99,2.19,
- + 3.39)
- > y2<-c(1.79,10.10,3.02,15.00,19.70,11.20,35.70,36.20,2.31,5.58,2.75,14.50,20.70, + 11.70.31.00.39.00.3.93.12.40.6.33.23.70.35.30.15.10.57.10.45.90.5.27.12.30.6.39.
- + 30.50,30.10,14.50,50.30,47.10)
- > Design.p9 <- add.response(Design.p9, y1, replace=FALSE)
- > Design.p9 <- add.response(Design.p9, y2, replace=FALSE)

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Design and Analysis of Two-Level Factorials

Creating and Analyzing Two-Level Factorials with R

Creating a two-level factorial design with R FrF2

10 3.06 10.10 10 1.96 3.02 10 1.87 19.70 10 1.97 35.70 60 1200 300 460 16 1200 460 10 3.43 39.00 18 40 100 300 60 3.16 12.40 60 2.01 6.33 60 3.43 23.70 60 3.39 47.10

Example analysis of a replicated 2³ factorial

	Lev	/els	
Factor	_	+	
A=Ambient temperature, °C	22	32	•
B=Voltmeter warmup time, minutes	0.5	5.0	
C=Time power is connected, minutes	0.5	5.0	
Y=measured voltage, millivolts			

Design and Analysis of Two-Level Factorials

Example analysis of a replicated 2³ factorial

Table 3.6 Factor Settings and Response for Voltmeter Experiment Factor Levels Coded Factors

Run	A	В	C	X_A	X_B	X_C	Rep	Order	y
1	22	0.5	0.5	-	-	-	1	5	705
2	32	0.5	0.5	+	-	-	1	14	620
3	22	5.0	0.5	-	+	-	1	15	700
4	32	5.0	0.5	+	+	-	1	1	629
5	22	0.5	5.0	-	-	+	1	8	672
6	32	0.5	5.0	+	-	+	1	12	668
7	22	5.0	5.0	-	+	+	1	10	715
8	32	5.0	5.0	+	+	+	1	9	647
1	22	0.5	0.5	-	-	-	1	4	680
2	32	0.5	0.5	+	-	-	1	7	651
3	22	5.0	0.5	-	+	-	1	2	685
4	32	5.0	0.5	+	+	-	1	3	635
5	22	0.5	5.0	-	-	+	1	11	654
6	32	0.5	5.0	+	-	+	1	16	691
7	22	5.0	5.0	-	+	+	1	6	672
8	32	5.0	5.0	+	+	+	1	13	673

Example analysis of a replicated 2³ factorial

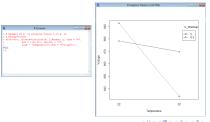
> library(daewr) Warning message:

Note

volt is a data frame in daewr package

```
package 'daewr' was built under R version
   22 0.5 0.5 705
2 32 0.5 0.5 620
3 22 5 0.5 700
4 32 5 0.5 629
5 22 0.5 5 672
6 32 0.5 5 668
7 22 5 5 715
8 32 5 5 647
9 22 0.5 0.5 680
10 32 0.5 0.5 651
11 22 5 0.5 685
12 32 5 0.5 635
13 22 0.5 5 654
14 32 0.5 5 691
15 22 5 5 672
16 32 5 5 673
 > class(volt$A)
[1] 'factor'
                                 4 D 3 4 M 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z 3 4 Z
```

John Lawson FTC Short Course - Design and Analysis of Experiments with F


Design and Analysis of Two-Level Factorials

Creating and Analyzing Two-Level Factorials with R

Example analysis of a replicated 23 factorial

```
Code was cut and pasted from
R examples for Chapter 2
                             > library(FrF2)
                             > modv<-lm(y ~ A*B*C, data=volt, contrast=list(A=contr.FrF2,
https://jlawson.byu.edu/RBOOK/ summary(modv)
                             Coefficients:
the statement
                                       Estimate Std. Error t value Pr(>|t|)
Created by R package FrF2
                             Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
      The estimates
are the regression coefficients or
                            Residual standard error: 18.07 on 8 degrees of freedom
      1/2 of the Effects.
                             Multiple R-squared: 0.772,
                                                       Adjusted R-squared: 0.5724
                             F-statistic: 3.869 on 7 and 8 DF, p-value: 0.0385
```

Example analysis of a replicated 2³ factorial

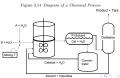
. . .

Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with
Blocking Two-Level Factorials
Restrictions on Prademination - Salit Plat Design

Example analysis of a replicated 2³ factorial

Note

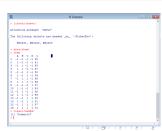

Since the design is orthogonal insignificant terms dropped without refitting to get a prediction equation

$$y = 668.56 - 16.81 \left(\frac{Temp - 27}{5}\right) + 6.27 \left(\frac{CWarm - 2.75}{2.25}\right) \left(\frac{Temp - 27}{5}\right)$$

Example analysis of an unreplicated 2⁴ design

- Temperature of the Coated Mixing-T

FTC Short Course - Design and Analysis of Experiments with F

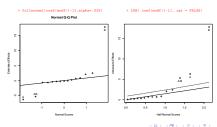

Design and Analysis of Two-Level Factorials

Creating and Analyzing Two-Level Factorials with R

Example analysis of an unreplicated 2⁴ design

Note

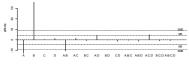
chem is a data frame in daewr package


Im(formula = y - A * B * C * D, data = chem) ALL 16 residuals are 0: no residual degrees of freedom: Residual standard error: NaN on 0 Nultiple R-squared: 1, Ac P-statistic: NaN on 15 and 0 DF

4 D 3 FTC Short Course - Design and Analysis of Experim

Design and Analysis of Two-Level Factorials

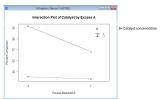
Creating and Analyzing Two-Level Factorials with R


Example analysis of an unreplicated 2⁴ design

Example analysis of an unreplicated 2⁴ design

factors

40 × 40 × 42 × 42 × 2 × 940


Lawson

ETC Short Course - Design and Analysis of Experiments with

Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Bandonization - Solit-Plat Designs

Example analysis of an unreplicated 2⁴ design

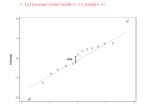
Example analysis of an unreplicated design with an outlier

$$E_i = \left(\left(\sum_{\{X_i = +\}} Y_i \right) - \left(\sum_{\{X_i = -\}} Y_i \right) \right) \middle/ \left(\frac{n}{2} \right)$$

Daniel (1960) proposed a manual method for detecting and correcting an outlier or atypical value in an unreplicated 2k design. This method consists of three steps. First, the presence of an outlier is detected by a gap in the center of a normal plot of effects. Second, the outlier is identified by matching the signs of the insignificant effects with the signs of the coded factor levels and interactions of each observation. The third step is to estimate the magnitude of the discrepancy and correct the atypical value.

Design and Analysis of Two-Level Factorials

Creating and Analyzing Two-Level Factorials with R


Example analysis of an unreplicated design with an outlier

Note

BoxM is a data frame in daewr package taken from Box(1991)

```
> library(daewr)
 > data(BoxM)
     ABCD
 1 -1 -1 -1 -1 47.46
2 1 -1 -1 -1 47.46
2 1 -1 -1 -1 49.62
3 -1 1 -1 -1 43.13
4 1 1 -1 -1 46.31
5 -1 -1 1 -1 51.47
6 1 -1 1 -1 48.49
7 -1 1 1 -1 49.34
8 1 1 1 -1 46.10
9 -1 -1 -1 1 46.76
 10 1 -1 -1 1 48.56
11 -1 1 -1 1 44.83
 12 1 1 -1 1 44.45
 13 -1 -1 1 1 59.15
  14 1 -1 1 1 51.33
  15 -1 1 1 1 47.02
```

Example analysis of an unreplicated design with an outlier

4 D 3 4 D 3

Design and Analysis of Two-Level Factorials

Creating and Analyzing Two-Level Factorials with R

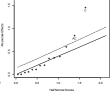
Example analysis of an unreplicated design with an outlier

			Corrrecte	d Data Report	
Label	Half Effect	Sig(.05)	Response	Corrected Response	Detect Outlier
λ	-0.400	no	47.46	47.46	no
2	-2.110	no	49.62	49.62	no
C	1.855	no	43.13	43.13	no
D	0.505	no	46.31	46.31	no
AR	0.455	no	51.47	51.47	no
AC	-1.245	no	48.49	48.49	no
AD	-0.290	no	49.34	49.34	no
BC .	-0.400	no	46.10	46.10	no
20	-0.590	no	46.76	46.76	no
CD	0.745	no	48.56	48.56	no
ARC	0.600	no	44.83	44.83	no
ARD	0.360	no	44.45	44.45	no
ACD	0.200	no	59.15	52.75	yes

47.90

Lawson, Grinshaw & Burt Rn Statistic = 1

95th percentile of Rn = 1.201 Initial Outlier Report


> Gaptest(SoxM)

Standardured-Gap = 3.353227 Significant at 50th percentile Final Outlier Report Standardized-Gap = 13.18936 Significant at 99th percentile

Creating and Analyzing Two-Level Factorials with R

Example analysis of an unreplicated design with an outlier

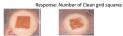
Lawson, Grimshaw & Burt Rn Statistic = 1.626089 95th percentile of Rn = 1.201

4 D 3 4 D 3

FTC Short Course - Design and Analysis of Experiments with R

Design and Analysis of Two-Level Factorials

Blocking a 24


Dish Soaking Experiment

Experimental Unit:

A=Water Temperature B=Soap Amount

Factors:

Table 7.4 Factors for Dishwashing Experiment Levels Factor

A-Water Temperature	60 Deg F	115 Deg F
B-Soap Amount	1 tbs	2tbs
C-Soaking Time	3 min	5 min
D-Soap Brand	WF	UP

Blocking a 24

Blocking factor:

E

Block 1 = W.F., 1:30 4 E.U's per block

Block 2 = W.F., 1:00

Block 3 = Prego, 1:30 Confound AC, ABD Block 4 = Prego, 1:00 AC(ABD)=BCD gets

Table 7.5 Blocks for Dishwashing Experiment

3lock	Type Sauce	Microwave Time
1	Store Brand	1 min
2	Premium Brand	1 min
3	Store Brand	1:30 min
4	Premium Brand	1:30 min

John Lawson FTC Short Course - Design and Analysis of Experiments with R

4 D 3 4 D 3

confounded

Design and Analysis of Two-Level Factorials

Create the design with FrF2

> library(FrF2)

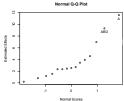
15

- > Bdish <- FrF2(16, 4, blocks=c("ABD", "BCD"), alias.block.2fis=TRUE, randomize=FALSE) > Bdish
- run.no run.no.std.rp Blocks A B C D 6.1.2 15.1.4 run.no run.no.std.rp Blocks A B C D 2 -1 -1 1 -1 2 -1 1 1 1 8 2 2 run.no run.no.std.rp Blocks A B C D 10 14.3.4 run.no run.no.std.rp Blocks A B C D 2.4.1 4-1-1-1 1 5.4.2 4-1 1-1-1 11.4.3 4 1-1 1-1

class-design, type- FrF2.blocked NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

Create the design with FrF2

```
> y<-c(0, 0, 12, 14, 1, 0, 1, 11, 10, 2, 33, 24, 3, 5, 41, 70)
> Billight-add regronge (Billigh regrongesy)
 run.no run.no.std.rp Blocks A B C D y
1 1.1.1 1 -1 -1 -1 -1 0
                12.1.3
                15.1.4
                3.2.1
                         2 -1 -1 1 -1 1 2 -1 1 1 1 0
                           2 1 -1 -1 1
                10 2 3
  run.no run.no.std.rp Blocks A B C D y
9 4.3.1 3 -1 -1 1 1 10
                              3 -1 1 1 -1 2
      10
               14.3.4
  run.no run.no.std.rp Blocks A B
              2.4.1 4 -1 -1 -1 1 3
5.4.2 4 -1 1 -1 -1 5
      13
       14
14
                            4 1 -1 1 -1 41
15
                 11.4.3
class-design, type= FrF2.blocked
```


NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

4 D 3 John Lawson FTC Short Course - Design and Analysis of Experiments with R

Design and Analysis of Two-Level Factorials

Analyze the design ignoring blocks

- > mudu<-lm(y A*B*C*D, data=Bdish)
- > fullnormal(coef(mudu)[-1],alpha=.1)

Analyze the design accounting for blocks

FTC Short Course - Design and Analysis of Experiments with R

Design and Analysis of Two-Level Factorials

An unlikely interaction

- > x <- as.numeric(Edish\$B)
- > Brand <- as.numeric(Edish\$D)
- > Brand <- as.numeric(sdish > Brand[Brand==1] <- "NF" > Brand[Brand=="2"] <- "UP"
- > interaction.plot(x, Brand, Bdish\$y, type="l" ,xlab="Soap Amount B",ylab="Average Clean Squares")

Criteria for choosing block defining contrasts

Confounding a 2k in blocks of size 2q

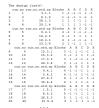
- 1. Choose k-g block defining contrasts
- 2. Block defining contrasts plus their generalized interactions are confounded with blocks

Example: Confounding a 25 factorial in blocks of size 22=4 ⇒25/22 = 23 = 8 blocks, 7 df 5-2 = 3 Choose ABC, CDE, ABCDE as block defining contrasts then the generalized interactions ABDE, DE, AB, and C are also confounded with blocks.

To find the best generators and block defining contrasts for a particular design problem is not a simple task. Fortunately, statisticians have provided tables that show choices that are optimal in certain respects. Box et al. (1978) provide tables for block defining contrasts that will result in a minimal number of low-order interactions being confounded with blocks in a blocked 2k design. Sun et al.(1997) provide an extensive catalog of block defining contrasts for 2k designs and generators for 2k-p designs along with the corresponding block defining contrasts that will result in best designs with regard to one of several quality criteria such as estimability order.

When not specied by the user, the function FrF2 in the R package FrF2 uses the block defining contrasts from Sun et al.'s (1997) catalog to create blocked 2k designs.

FTC Short Course - Design and Analysis of Exper


Design and Analysis of Two-Level Factorials

Blocking Two-Level Factorials

Create design with Default FrF2 block contrasts

```
> summary(Blocked25)
Call:
FrF2(32, 5, blocks = 8, alias.block.2fis = TRUE, randomize = FALSE)
Experimental design of type FrF2.blocked
blocked design with 8 blocks of size 4
Factor settings (scale ends):
A B C D E
1 -1 -1 -1 -1 -1
2 1 1 1 1 1
Design generating information:
[1] A=A B=B C=C D=D E=E
S'generators for design itself'
[1] full factorial
[1] ABCD ACE BCE
no aliasing of main effects or 2fis among experimental factors
Aliased with block main effects:
```

Create design with Default FrF2 block contrasts

class=design, type= FrF2.blocked NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

Design and Analysis of Two-Level Factorials

Multiple process steps make complete randomization very time consuming

Process Experiments

- Factor in Earlier Step become Whole Plot Factor
- Factors in Later Steps can be varied within and become subplot factors

Example - Process for making sausage casing

Design and Analysis of Two-Level Factorials

Test all 4 combinations of C and D in each batch

Sausages can be cooked in many ways from steaming to deep-fat frying, and the casing must be able to handle the stress and temperature changes without bursting. Experiments were run to determine how the combination of levels of two factors A and B in the gel making process, and the combination of levels of two factors C and D in the gel extrusion step affected the bursting strength of the final casing.

Table 8.4 First Four Batches for Sausage-Casing Experiment

Gel			C	-	+	-	+
Batch	A	В	D	-	-	+	+
1	-	-		2.07	2.07	2.10	2.12
2	+	-		2.02	1.98	2.00	1.95
3	-	+		2.09	2.05	2.08	2.05
4	+	+		1.98	1.96	1.97	1.97

Repeat with another lot of raw material (collagen)

Table 8.5 Second Block of Four Batches for Sausage-Casing Experiment

(šel			C		+		+
Ba	tch	A	В	D	-	-	+	+
	1	-	-		2.08	2.05	2.07	2.05
	2	+	-		2.03	1.97	1.99	1.97
	3	-	+		2.05	2.02	2.02	2.01
	4	+	+		2.01	2.01	1.99	1.97

- (B) (B) (B) (B) (B) (B) (900

hn I sween

Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with
Blocking Two-Level Factorials
Restrictions on Prademination - Solit Plat Design

Whole plot model is like a blocked two-factor factorial

$$y_{ijk} = \mu + b_i + \alpha_j + \beta_k + \alpha \beta_{jk} + w_{ijk}$$

 b_i is the random block or collagen shipment effect

 α_j is the fixed effect of factor A

 β_k is the fixed effect of factor B

Split-plot model has two error terms

The model for the complete split-plot experiment is obtained by adding the split-plot factors C and D and all their interactions with the other factors as shown

Block (Collagen Lot) Block interactions (variability in gel batches)

$$y_{ijklm} = \mu + b_i + \alpha_j + \beta_k + \alpha\beta_{jk} + w_{ijk}$$

 $+ \gamma_l + \delta_m + \gamma\delta_{lm} + \alpha\gamma_{jl} + \alpha\delta_{jm}$

+
$$\beta \gamma_{kl}$$
 + $\beta \delta_{km}$ + $\alpha \beta \gamma_{jkl}$ + $\alpha \beta \delta_{jkm}$
+ $\alpha \gamma \delta_{ikl}$ + $\beta \gamma \delta_{klm}$ + $\alpha \beta \gamma \delta_{iklm}$ + ϵ_{iiklm}

4 D 3 4 D 3

FTC Short Course - Design and Analysis of Experiments with F

Design and Analysis of Two-Level Factorials

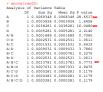
Create the design with FrF2

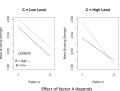
> FrF2(32, 4, MPs - 8, nfac.MP - 2, factor.names - (c('A','B','C','D'))) run.no run.no.std.rp A B MP3 C D 1 1 1 4.1.4 - 1 - 1 1 1 1

2	2	1.1.1				
3	3	3.1.3	-1 -1	-1	1 .	-1
4	4	2.1.2	-1 -1	-1	-1	1
ru	n.no run.	no.std.rp	ABW	23 (: D	
5	5	29.8.1				
6	6	30.8.2	1 1	1 -1	1	
	7	32.8.4	1 1	1 1	1	
8	8	31.8.3	1 1	1 1	-1	
	un.no run	.no.std.rp				
9	9	20.5.4				
10	10	18.5.2	1 -1	-1	-1	1
11	11	17.5.1	1 -1	-1	-1	-1
12	12	19.5.3	1 -1	-1	1	-1
run.	no run no	.atd.rp A	B WD	3 0	D	

15.4.3 -1 1 1 1 -1 16.4.4 -1 1 1 1 1 13.4.1 -1 1 1 -1 -1 14.4.2 -1 1 1 -1 1 30 30 31

class=design, type= FrF2.splitplot NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame


The data frame sausage is in the daewr package


```
Loading required package: Natrix
Loading required package: Rcpp
Attaching package: 'Ime4
The following object is masked from 'package daswr's
> rmod2<-lmar(ya- A + B + A(B + (1|Block) + (1|A(B(Block) + C + D + C(D + A(C + A(D + B(C + B(D + A(B(C + A(B(D + A(C(D + B(C(D + A(B(C)) + C(D + A(B(C)) + A(B(C)) + A(B(C))))))))))))))))))
Linear mixed model fit by REML ['ImerMod']
| Tormula: ym - A + B + AlB + AlB + AlB | Alock) + (1 | AlB:Block) + C + D + C(D + AlC + AlD + BlC + AlB + AlB:C + AlB:D + AlCiD + BlCD + AlB:C1D | Data: assumage
Scaled residuals:
Nin 1Q Median 3Q Max
-1.5089 -0.3102 0.0000 0.3102 1.5089
Random effects:
 A:B:Block (Intercept) 0.0003396 0.01843
 Rlock (Intercept) 0.0000000 0.00000
Residual 0.0002385 0.01544
Number of obs: 32, groups: A:B:Block, 8: Block, 2
```

4 D 3 John Lawson FTC Short Course - Design and Analysis of Experiments with R

Design and Analysis of Two-Level Factorials

Analysis of the fixed Effects

upon the combination of levels of factors B and C

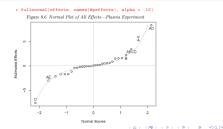
An unreplicated split-plot design

Bisgaard et al.(1996) described an experiment that was performed to study the plasma treatment of paper, between electrodes in a low vacuum chamber reactor, to make it more susceptible to ink.

	Lev	els		40
Factor	-	+	Difficulty in Changing Levels	No.
A - pressure	Low	High		N
B - Power Level	Low	High	difficult requires a new set up to change	
C - Gas Flow Rate	Low	High	difficult requires a new set up to change	/
D - Type Gas	Oxygen	SiCl	difficult requires a new set up to change	
E - Paper Type	A	В	easy both types can be treated in the same run after setup is complete	

Design and Analysis of Two-Level Factorials

The data frame plasma is in the daewr package


Table 8.6 Plasma Experiment Factor Levels and Response

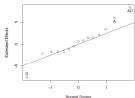
+ - + + 47.5

	A	В	C	D	-	+
Whole-Plot Effects	-	-	-	-	48.6	57.0
A, B, AB, C, AC, BC, ABC, D, AD, BD, ABD, CD, ACD, BCD, ABCD	+	-	-	-	41.2	38.2
Solit-Plot Effects	-	+	-	-	55.8	62.9
F and interactions with F	+	+	-	-	53.5	51.3
E and interactions with E	-	-	+	-	37.6	43.5
> library(daswr)	+	-	+	-	47.2	44.8
> sol <- lm(v ~ A*B*C*D*E, data = plasma)	-	+	+	-	47.2	54.6
> effects <- coef(sol)	+	+	+	-	48.7	44.4
> effects <- effects[c(2:32)]	-	-	-	+	5.0	18.1
> Wpeffects <- effects[c(1:4, 6:11, 16:19, 26)]	+	-	-	+	56.8	56.2
> Speffects <- effects[c(5,12:15,20:25,27:31)]	-	+	-	+	25.6	33.0
	+	+	-	+	41.8	37.8
	_	_	+	+	13.3	23.7

43.2

Analysis by normal plot of all effects is misleading

FTC Short Course - Design and Analysis of Experiments with

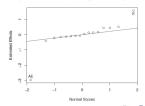

Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with
Blocking Two-Level Factorials
Restrictions on Randomization - Solit-Plot Designs

Normal plot of whole-plot effects

> fullnormal(Wpeffects, names(Wpeffects), alpha = .10)

Figure 8.4 Normal Plot of Whole-Plot Effects—Plasma Experiment



Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Partitions on Pandemination - Solit Plot Designs

Normal plot of split-plot effects

> fullnormal(Speffects, names(Speffects), alpha = .05)

Figure 8.5 Normal Plot of Sub-Plot Effects-Plasma Experiment

ohn Lawren

ETC Short Course - Design and Analysis of Experiments with

Prelimina

Part IV

Design and Analysis of Preliminary Experiments for Estimating Sources of Variance

Outline of Part IV

- Introduction
- One-Factor Designs
- Two-Factor Designs
- Staggered Nested Designs for Multiple Factors
- Graphical Methods to Check Assumptions
- Chemistry Example

ohn I suwon

Preliminary

Introduction
One-Factor Designs
Two-Factor Designs

Staggered Nested Designs for Multiple Facto Graphical Methods to Check Assumptions Chemistry Example

Preliminary Exploration

	0,0		itilo ilicug	•	20070
Objective:	Preliminary Exploration	Screening Factors	Effect Estimation	Optimization	Mechanistic Modeling
No. of Factors		5 - 20	3 - 6	2 - 4	1 - 5
Purpose:	Identify Sources of Variability	Identify Important Factors	Estimate Factor Effects +	Fit Empirical Model Interpolate	Estimate Parameters of Theory

Interactions

Extrapolate

Identify fruitful areas for identifying factors

Sampling Experiments

- Identify Process Steps that contribute the most variability
- · Later identify factors in variable process steps that cause the variability

4 D 3 John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminary

Introduction One-Factor Designs

Two sources of variability

Hare (1988) discussed experiments to control variability in dry soup mix "intermix" (vegetable oil, salt flavorings etc.).

- · too little not enough flavor
- too much too strong

Introduction One-Factor Designs

One-rector Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Soup batch and Sample within batch

Step 1. Make a batch of soup and dry it on a rotary dryer

- Possible Factors
- A Ingredients B - Cook temperature
- C Dryer temperature D - Dryer RPM, etc

Step 2. Place dry soup in a mixer where intermix is injected through ports

- E number of mixer ports for Vegetable oil
- F temperature of mixer lacket
- G Mixing time
- H Batch weight I - delay time between
- mixing and packaging,

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminary

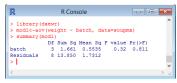
Introduction One-Factor Designs

Method of Moments Estimators

$$y_{ij} = \mu + t_i + \varepsilon_{(i)j} \quad i = 1,4, \quad j = 1,3, \quad k = 4, \quad r = 3$$

Table 5.4 Variability in Dry Soup Intermix Weights

Batch	Weight
1	0.52, 2.94, 2.03
2	4.59, 1.26, 2.78
3	2.87, 1.77, 2.68
4	1 20 1 57 4 10


Source	df	MS	EMS
Factor T	t-1	msT	$\sigma^2 + r\sigma_i^2$

Error t(r-1) msE

Introduction One-Factor Designs

One-rector Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Method of Moments Estimators

$$\sigma^2 + 3\sigma_b^2$$
 σ^2

$$\hat{\sigma}^2 = 1.7312$$

$$\hat{\sigma}_b^2 = \frac{0.5535 - 1.7312}{3} < 0.0$$

4 D 3 4 D 3

Preliminary

Introduction One-Factor Designs

One-rector Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

John Lawson FTC Short Course - Design and Analysis of Experiments with F

Maximum Likelihood and REML estimators

$$y_{ij} = \mu + t_i + \varepsilon_{(i)j} \qquad y = X\beta + \epsilon, \qquad \beta' = (\mu, t')$$

$$\left(\begin{array}{c} t \\ \epsilon \end{array}\right) \sim MVN\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} \sigma_t^2 I_t & 0 \\ 0 & \sigma^2 I_n \end{array}\right)\right), \qquad I_t \text{ is a } t \times t \text{ Identity matrix}$$

Maximum Likelihood and REML estimators

$$y_{ij} = \mu + t_i + \varepsilon_{(i),j}$$
 $y = X\beta + \epsilon, \quad \beta' = (\mu, t')$

$$\begin{pmatrix} t \\ \epsilon \end{pmatrix} \sim MVN \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_t^2 I_t & 0 \\ 0 & \sigma^2 I_n \end{pmatrix} \end{pmatrix}$$
, I_t is a $t \times t$ Identity matrix

maximum likelihood estimators for σ_i^2 and σ^2 are found my maximizing

$$L(\mu, V| \boldsymbol{y}) = \frac{\exp\left[-\frac{1}{2}(\boldsymbol{y} - \mu \mathbf{1_n})' V^{-1}(\boldsymbol{y} - \mu \mathbf{1_n})\right]}{(2\pi)^{\frac{1}{2}n} |V|^{\frac{1}{2}}} = \frac{\exp\left\{-\frac{1}{2}\left[\frac{ssE}{\sigma^2} + \frac{ssT}{\lambda} + \frac{(\tilde{y} - \mu)^2}{\lambda/n}\right]\right\}}{(2\pi)^{\frac{1}{2}n} \sigma^{2[\frac{1}{2}n]} \lambda^{\frac{1}{2}T}}$$

Preliminary

Maximum Likelihood and REML estimators

$$\begin{split} y_{q} &= \mu + t_{i} + \epsilon_{(i)} \\ &= y = X\beta + \epsilon, \qquad \beta' = (\mu, t') \\ \left(\begin{array}{c} t \\ \epsilon \end{array} \right) &\simeq MVN \left(\left(\begin{array}{cc} 0 \\ 0 \end{array} \right), \left(\begin{array}{cc} \sigma_{i}^{2}I_{t} & 0 \\ 0 & \sigma^{2}I_{n} \end{array} \right) \right), \qquad I_{t} \text{ is a } t \times t \text{ Identity matrix} \end{split}$$

maximum likelihood estimators for σ_i^2 and σ^2 are found my maximizing

$$L(\mu, V|y) = \frac{\exp\left[-\frac{1}{2}(y - \mu \mathbf{1}_n)'V^{-1}(y - \mu \mathbf{1}_n)\right]}{(2\pi)^{\frac{1}{2}n}|V|^{\frac{1}{2}}} = \frac{\exp\left[-\frac{1}{2}\left[\frac{sxF}{c^2} + \frac{xF}{\lambda} + \frac{(g - \mu)^2}{\lambda f_n}\right]}{(2\pi)^{\frac{1}{2}n}c^{\frac{1}{2}(\frac{1}{2})\lambda}\sqrt{\frac{1}{2}n}}\right]$$

REML estimators for σ_i^2 and σ^2 are found my maximizing

$$L(\sigma^2, \sigma_t^2 | ssT, ssE) = \frac{L(\mu, \sigma^2, \lambda | y)}{L(\mu | \bar{y}_-)}$$

4 D 2 4 D 2 4 D 2 4 D 3

Introduction One-Factor Designs

Maximum Likelihood and REML estimators

- > library(daewr)
- > library(lme4) > mod2<-lmer(weight ~ 1 + (1|batch), data=soupmx)
- > summary(mod2) Linear mixed model fit by REML ['lmerMod']

Formula: weight ~ 1 + (1 | batch) Data: soupmox

REML criterion at convergence: 37.5

Scaled residuals:

Min 10 Median 30 -1.56147 -0.71722 -0.01614 0.43230 1.86604

Random effects: Variance Std.Dev.

Number of obs: 12, groups: batch, 4

 $\hat{\sigma}_b^2 = 0.0$ $\hat{\sigma}^2 = 1.41$

Fixed effects:

Estimate Std. Error t value (Intercept) 2.3742 0.3428 6.926

4 D 3 John Lawson FTC Short Course - Design and Analysis of Experiments with F

Preliminary

One-Factor Designs

One-ractor Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

The next step - screening factors

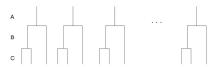
Objective: Preliminary Screening Exploration Factors

Factors

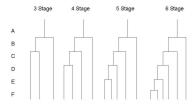
No. of 5 - 20

Step 2. Place dry soup in a mixer where intermix is injected through ports

Factor Label	Name	Low Level	High Level
A	Number of Ports	1	3
В	Temperature	Cooling Water	Ambient
C	Mixing Time	60 sec.	80 sec.
D	Batch Weight	1500 lb	2000 lb
173	D.I. D.	-	1


Nested design

40 × 40 × 42 × 42 × 2 × 990


Preliminary

Staggered nested design

Two-Factor Designs Staggered Nested Designs for Multiple Factors

Staggered nested design

40 × 40 × 42 × 42 × 2 × 900

Preliminary

Method of moments estimation

			Stages	Term	EMS
	Staggered		3	A	$\sigma_C^2 + (5/3)\sigma_B^2 + 3\sigma_A^2$
	Nested	Nested		В	$\sigma_C^2 + (4/3)\sigma_B^2$
Source	df	df		C	σ_C^2
A	a-1	a - 1	4	A	$\sigma_D^2 + (3/2)\sigma_C^2 + (5/2)\sigma_B^2 + 4\sigma_A^2$
B in A	a	a		В	$\sigma_D^2 + (3/2)\sigma_C^2 + (5/2)\sigma_B^2 + 4\sigma_A^2$ $\sigma_D^2 + (7/6)\sigma_C^2 + (3/2)\sigma_B^2$
C in B	a	2a		C	$\sigma_D^2 + (4/3)\sigma_C^2$
D in C	a	4a		D	σ_D^2

Staggered Nested Designs for Multiple Factors

An Example

Mason et al. (1989) described a study where a staggered nested design was used to estimate the sources of variability in a continuous polymerization process. In this process polyethylene pellets are produced in lots of one hundred thousand pounds. A four-stage design was used to partition the source of variability in tensile strength between lots, within lots and due to the measurement process.

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminary

Two-Factor Designs Staggered Nested Designs for Multiple Factors

Data from the first 10 of 30 lots

Table 5.13 Data from Polymerization Strength Variability Study

		Box 1		Box 2
		Prepara	ation	Preparation
		1	2	1
Lot	test 1	test 2	test 1	test 1
1	9.76	9.24	11.91	9.02
2	10.65	7.77	10.00	13.69
3	6.50	6.26	8.02	7.95
4	8.08	5.28	9.15	7.46
5	7.84	5.91	7.43	6.11
6	9.00	8.38	7.01	8.58
7	12.81	13.58	11.13	10.00
8	10.62	11.71	14.07	14.56
9	4.88	4.96	4.08	4.76
10	9.38	8.02	6.73	6.99

Method of moments estimators

```
R Console
                                                                                               Data frame
> mod2<-aov(strength - lot + lot;box + lot;box;prep, data = polymer)
> summary (mod2)
                                                                                               polymer
               Df Sum Sg Hean Sg F value Pr(>F)
lot 29 856.0 29.516 45.552 < 2e-16 ***
lotthox 30 50.1 1.670 2.577 0.005774 **
lotthox:prep 30 68.4 2.281 3.521 0.000457 ***
Residuals 30 19.4 0.648
                                                                                               is in the
                                                                                               daewr
                                                                                               package
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 $\sigma_R^2 = 0.648$

 $\sigma_D^2 = (2.281 - 0.648)/(4/3) = 1.22475$

 $\sigma_R^2 = (1.670 - [0.648 + (7/6)1.22475])/(3/2) = -0.27125$

 $\sigma_L^2 = (29.516 - [0.648 + (3/2)(1.22475) + (5/2)(-0.27125)])/4 = 6.92725$

John Lawson FTC Short Course - Design and Analysis of Experiments with R

4 D 3 4 D 3

Preliminary

Staggered Nested Designs for Multiple Factors

REML estimators

Variance components are pooled variances

		Box 1 Prepara	ation	Box 2 Preparation
		1	2	1
Lot	test 1	test 2	test 1	test 1
i	Y_{1i}	Y_{2i}	Y_{3i}	Y_{4i}

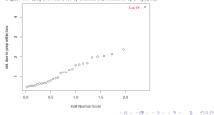
Source	Variance s_i^2
Error or test(prep) prep(box)	$(Y_{2i} - Y_{1i})^2/2$ $\frac{2}{3} (Y_{3i} - \frac{(Y_{1i} + Y_{2i})}{2})^2$ $\frac{3}{4} (Y_{4i} - \frac{(Y_{1i} + Y_{2i} + Y_{3i})}{3})^2$
box	$\frac{3}{4}\left(Y_{4i} - \frac{(I_{1i}+I_{2i}+I_{3i})}{3}\right)$

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminary

Computing and graphing variances in R


		Box 1		Box 2	Source	Variance s_i^2
Lot	$\frac{\text{test 1}}{Y_{1i}}$	Prepara 1 test 2 Y _{2i}	test 1 Y_{3i}	Preparation 1 test 1 Y _{4i}	Error or test(prep) prep(box) box	$(Y_{2i} - Y_{1i})^2/2$ $\frac{2}{3}(Y_{3i} - \frac{(Y_{1i} + Y_{2i})}{2})^2$ $\frac{3}{4}(Y_{4i} - \frac{(Y_{1i} + Y_{2i} + Y_{3i})}{2})^2$

- > library(daewr)
- > data(polymer)
- > sd1 <- sqrt([y[2,] y[1,]])**2 / 2) > sd2 <- sqrt([2/3] * (y[3,] (y[1,] + y[2,]) / 2)**2)
- > sd3 <- sqrt((3/4) * (y[4,] (y[1,] + y[2,] + y[3,])/3)**2) > osd2 <- sort(sd2)
- > r <- c(1: length(sd2))
- > zscore <- qnorm(((r 5) / length(sd2) +1)/ 2)
 > plot(zscore, osd2, main = "Half-normal plot of prep(box) standard
 + deviations", xlab = "Half Normal Score", ylab = "std. due to prep within
- + box")

Introduction
One-Factor Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factor
Graphical Methods to Check Assumptions
Chemistry Example

Computing and graphing variances in R

Figure 5.6 Half-Normal Plot of Standard Deviations of Prep(Box)

hn Lawson FTC Short Course - Design and Analysis of Experiments with

Preliminary

Introduction
One-Factor Designs
Two-Factor Designs
Staggard Nasted Designs

Odd value in Lot 19

Table 5.18 Raw Data for Each Lot and Calculated Standard Deviations

lot	Y_1	Y_2	Y_3	Y_4	81	82	83
1	9.76	9.24	11.91	9.02	0.368	1.968	1.111
2	10.65	7.77	10.00	13.69	2.036	0.645	3.652
3	6.50	6.26	8.02	7.95	0.170	1.339	0.886
4	8.08	5.28	9.15	7.46	1.980	2.017	0.038
5	7.84	5.91	7.43	6.11	1.365	0.453	0.823
6	9.00	8.38	7.01	8.58	0.438	1.372	0.390
7	12.81	13.58	11.13	10.00	0.544	1.686	2.171
8	10.62	11.71	14.07	14.56	0.771	2.372	2.102
9	4.88	4.96	4.08	4.76	0.057	0.686	0.104
10	9.38	8.02	6.73	6.99	0.962	1.608	0.912
11	5.91	5.79	6.59	6.55	0.085	0.604	0.393
12	7.19	7.22	5.77	8.33	0.021	1.172	1.389
13	7.93	6.48	8.12	7.43	1.025	0.747	0.069
14	3.70	2.86	3.95	5.92	0.594	0.547	2.093
15	4.64	5.70	5.96	5.88	0.750	0.645	0.387
16	5.94	6.28	4.18	5.24	0.240	1.576	0.196
17	9.50	8.00	11.25	11.14	1.061	2.041	1.348
18	10.93	12.16	9.51	12.71	0.870	1.662	1.596
19	11.95	10.58	16.79	13.08	0.969	4.511	0.023
						-	> 4.69

Reanalysis excluding lot 19

Table 5.19 Comparison of Method of Moments and REML Estimates for Polymerization Study after Removing Lot 19

	Method of Moments	REML
Component	Estimator	Estimator
Lot (σ_a^2)	5.81864	6.09918
$Box(Lot) (\sigma_b^2)$	0.13116	0.04279
$Prep(Box) (\sigma_c^2)$	0.76517	0.79604
Error (σ^2)	0.63794	0.64364

John Lawson FTC Short Course - Design and Analysis of Experiments with F

Preliminary

Catalyst Support Material

*Interest in catalyst support in lab

*The rate of catalyst reaction is related to the available number of catalytic sites. To increase the number of active sites, catalysts are dispersed on a support

*Interest in making Al₂O₃ catalyst support

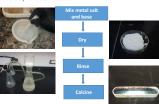
- 1. High thermal stability
- 2. High surface area
- 3. Mesoporous nature

*Important catalyst support properties

- High surface area →increase catalyst dispersion and catalytic reaction sites →decrease reaction times.
- 2. Optimal pore size →each catalytic system requires a unique pore size →better diffusion and selectivity.
- 3. Thermal stability ->many catalytic reactions take place at elevated temperatures.

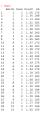
Applications of Alumina Catalyst Support

- · Aluminum oxides support applications
- 1. Automotive Gasoline Catalytic Converters, which converts toxic chemical (carbon monoxide and unburned hydrocarbon) in exhaust to CO2 and H2O.
- 2. Fischer-Tropsch synthesis (FTS), which liquid fuels are produced from natural gas.



40 × 40 × 42 × 42 × 2 × 99.0

Preliminary


Process to Create Alumina Catalyst Support

Basic Synthesis Method

Exploration Experiment 1

40 × 40 × 42 × 42 × 2 × 99.0

FTC Short Course - Design and Analysis of Experiments with F

Preliminary

Analysis of Exploration Experiment 1

```
> modEl<-lmer(PoreV ~ 1 + (1|Batch), data=Expl)
Linear mixed model fit by REML ['lmerMod']
Formula: PoreV ~ 1 + (1 | Batch)
   Data: Expl
REML criterion at convergence: -42.4
Scaled residuals:
                1Q Median
-2.21247 -0.57360 -0.07284 0.72383 1.61155
Random effects:
 Groups Name Variance Std.Dev.
Batch (Intercept) 0.00000 0.0000
Residual 0.01206 0.1098
                      Variance Std.Dev.
Number of obs: 30, groups: Batch, 10
            Estimate Std. Error t value
(Intercept) 1.24300 0.02005 61.99
```

Analysis of Exploration Experiment 1

```
> modE1<-lmer(SA ~ 1 + (1|Batch), data=Exp1)
> summary(modE1)
Linear mixed model fit by REML ['lmerMod']
Formula: SA - 1 + (1 | Batch)
  Data: Expl
REML criterion at convergence: 218.1
Scaled residuals:
Min 1Q Median 3Q Max
-1.3054 -0.6465 -0.1551 0.8390 1.5276
Random effects:
| Groups | Name | Variance Std.Dev
| Batch | (Intercept) 37.09 | 6.090
| Residual | 71.77 | 8.472
                      Variance Std.Dev.
Number of obs: 30, groups: Batch, 10
Fixed effects:
            Estimate Std. Error t value
(Intercept) 175.67 2.47 71.12
```

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminary

Residual Variability

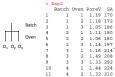
> boxplot(SA-Oven, data=Expl, ylab="Surface Area", xlab="Oven Number")

Possible Explanation

maybe extra time on the bench affects PoreV and SA not Oven

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R


Preliminary

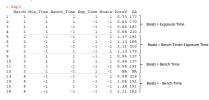
Exploratory Experiment 2

```
> Exp2
  Batch Oven PoreV SA
  1 1 1.19 170
2
    1 2 1.18 172
   1 3 1.05 186
4
   2 1 1.11 180
5
   2 2 1.06 180
   2 3 1.14 197 -
7
    3 1 1.16 214
8
    3
       2 1.49 208
    3
3 1.33 292 -
   4 3 2.22 325 -
```

Another Conjecture

12 4 3 2.22 325 Batches 3 and 4 used a different (slower) filter and thus had a longer exposure time to sec-butanol which seemed to affect Pore Volume and Surface Area

4 D 3 4 D 3


John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminary

Chemistry Example

Experiment to Estimate Effects

Split-Plot Fractional Factorial

Experiment to Further Study Relationships

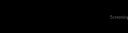
Split-Plot 33 Fractional Factorial

2	Expa						
	Batch	Mix_Time	Exp_Time	Boats	PoreV	SA	
1	1	1	1	-1	0.93	187	
2	1	1	-1	1	0.94	132	
3	2	1	1	1	0.68	210	
4	2	1	-1	-1	0.66	187	
5	3	-1	-1	-1	1.31	170	
6	3	-1	1	1	1.19	217	
7	4	0	1	0	0.75	143	
8	4	0	0	1	0.75	137	
9	5	-1	0	0	1.00	164	
10	5	-1	0	0	1.02	171	
11	. 6	-1	1	-1	1.11	203	
12	6	-1	-1	1	1.17	191	
13	7	0	0	1	0.70	140	
14	7	0	1	0	0.76	171	

4 D 3 4 D 3

Preliminary

Results of Experiments



Exp1,Exp2 --- Exp3 --- Exp4

Effect of Factors on Catalyst Support Properties

	Properties			
Factor	Pore Volume	Surface Area		
Mixing Time	+			
Bench Time		-		
Exposure Time to sec-Butanol		+		

- 1. High surface area →increase catalyst dispersion and catalytic reaction sites →decrease reaction times.
- Optimal pore size →each catalytic system requires a unique pore size →better diffusion and selectivity. 40 × 40 × 42 × 42 × 2 × 99.0

Part V

Design and Analysis of Screening Experiments

John Lawson

FTC Short Course - Design and Analysis of Experiments with I

Screen

Outline of Part V

- Design and Analysis of Screening Experiments
 - Introduction
 - Half-Fractions of Two-Level Factorial Designs
 - One-Quarter and Higher Fractions of Two-Level Factorial Designs
 - Criteria for Choosing Generators for Fractional Factorial Designs
 - Augmenting Fractional Factorial Designs to Resolve Confounding
 - Plackett-Burman and Model Robust Screening Designs

Number of Experiments required for Two-Level Factorials

Number of Factors	Number of Experiments
4	16
5	32
6	64
7	128
8	256
9	512

One-at-a-Time Experiments

A Poor Solution is to Use One-at-a-Time Experiments

Run	Α	В	C	D	Ε	F	G	Н
1	•	-	•	•	-	-	-	•
2	+	-	-	-	-	-	-	-
3	-	+	-	-	-	-	-	-
4	-	-	+	-	-	-	-	-
5	-	-	-	+	-	-	-	-
6	-	-	-	-	+	-	-	-
7	-	-	-	-	-	+	-	-
8	-	-	-	-	-	-	+	-
9	-	-	-	-	-	-	-	+

Introduction

One-Quarter and Higher Fractions of Two-Level Factorial Design Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confoundin Plackett-Burman and Model Robust Screening Designs

Fractional Factorial Designs

- Method for strategically picking a subset of a two-Level Factorial
- Used for Screening purposes
- Has much higher Power for Detecting Effects than One-at-a-Time Experiments
- Can be used to estimate some interaction effects and do limited optimization

n Lawson

FTC Short Course - Design and Analysis of Experiments with I

Screening

Introduction

One-Quarter and Higher Fractions of Two-Level Factorial Design Criteria for Choosing Generators for Fractional Factorial Design Augmenting Fractional Factorial Designs to Resolve Confoundi Plackett-Burman and Model Robust Screening Designs

Paradigms that Justify the Use of Fractional Factorials

- Effect Sparsity Principle-Box and Meyer (1986)
- Hierarchical Ordering Principle-Wu and Hamada(2000)
- Effect Heredity Principle-Hamada and Wu(1992)

Introduction Half-Fractions of Two-Level Factorial Designs

One-Quarter and Higher Fractions of I wo-Level Factorial Design Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Procedure for Constructing a Half-Fraction

For example, to construct a one-half fraction of a 2^k design, denoted by $\frac{1}{2}2^k$ or 2^{k-1} , the procedure is as follows:

- 1. Write down the base design, a full factorial plan in k-1 factors using the coded factor levels (-) and (+).
- Add the kth factor to the design by making its coded factor levels equal to the product of the other factor levels (i.e., the highest order interaction).
- Use these k columns to define the design.

n Lawson

FTC Short Course - Design and Analysis of Experiments with F

Screening

Half Exertings of Toys Level Exertise Decision

One-Quarter and Higher Fractions of Two-Level Factorial Desig Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confoundir Plackett-Burman and Model Robust Screening Designs

The Base Design

24-1 Base Design

Δ_A	AB	Δc
-	-	-
+	-	-
-	+	-
+	+	-
-	-	+
+	-	+
-	+	+

Adding an Interaction Column

24-1 Base Design

X_A	X_B	X_C	X_{ABC}
-	-	-	-
+	-	-	+
-	+	-	+
+	+	-	-
-	-	+	+
+	-	+	-
	14.	-1.	

Screening

Assigning the Added Factor to the Interaction

24-1 Base Design

X_A	X_B	X_C	X_D
-	-	-	-
+	-	-	+
-	+	-	+
+	+	-	-
-	-	+	+
+	-	+	-
-	+	+	-

Introduction Half-Fractions of Two-Level Factorial Designs

One-Quarter and Higher Fractions of Two-Level Factorial Design Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

The Defining Relationship

2⁴⁻¹ Base Design

X_A	X_B	X_C	X _D
-	-	-	-
+	-	-	+
-	+	-	+
+	+	-	-
-	-	+	+
+	-	+	-
-	+	+	-

$$D = ABC$$
 generator of the design

$$D^2 = ABCD$$

or
$$I = ABCD$$

defining relation for the fractional factorial design

Lawsor

FTC Short Course - Design and Analysis of Experiments with R

Screening

Half-Fractions of Two-Level Factorial Designs

One-Quarter and Higher Fractions of Two-Level Factorial Design Criteria for Choosing Generators for Fractional Factorial Design Augmenting Fractional Factorial Designs to Resolve Confoundi Plackett-Burman and Model Robust Screening Designs

The Confounding Pattern

$$\begin{aligned} A(I) &= A(ABCD) \\ \text{or} \\ A &= BCD \end{aligned}$$

I + ABCD A + BCDB + ACD

confounding pattern or alias structure

B + ACD C + ABD D + ABC AB + CD AC + BDAD + BC

Half-Fractions of Two-Level Factorial Designs

An Example of a Half-Fraction

Table 6.3 Factors and Levels for Soup Mix 2⁵⁻¹ Experiment Factor Label Name Low Level High Level

A	Number of Ports	1	3	
В	Temperature	Cooling Water	Ambient	
C	Mixing Time	60 sec.	80 sec.	
D	Batch Weight	1500 lbs	$2000 \; { m lbs}$	
E	Delay Days	7	1	

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with F

Screening

Half-Fractions of Two-Level Factorial Designs

Creating the Design with FrF2

- > soup <- FrF2(16, 5, generators = "ABCD", factor.names = list(A=c(1,3),
- C=c(60,80),D=c(1500,2000), E=c(7,1)), randomize = FALSE)
- > soup
- A B C D E Cool 60 1500 7 2 3 3 1 Ambient 60 1500 7 3 Ambient 60 1500 1 5 1 Cool 80 1500 7
- Cool 80 1500 1 7 1 Ambient 80 1500 1 8 3 Ambient 80 1500 7
- 9 1 Cool 60 2000 7 10 3 Cool 60 2000 1 11 1 Ambient 60 2000 1 12 3 Ambient 60 2000 7 13 1 Cool 80 2000 1 14 3 Cool 80 2000 7
- 15 1 Ambient 80 2000 7 16 3 Ambient 80 2000 1
- class-design, type= FrF2.generators

Half-Fractions of Two-Level Factorial Designs

Adding the Responses

```
> \gamma \leftarrow c(1.13, 1.25, .97, 1.70, 1.47, 1.28, 1.18, .98, .78,
+ 1.36, 1.85, .62, 1.09, 1.10, .76, 2.10 ) > library(DoE.base)
> soup <- add.response( soup , y )
> soup
A B C D E y
1 1 Cool 60 1500 1 1.13
2 3 Cool 60 1500 7 1.25
3 1 Ambient 60 1500 7 0.97
4 3 Ambient 60 1500 1 1.70
5 1 Cool 80 1500 7 1.47
6 3 Cool 80 1500 1 1.28
7 1 Ambient 80 1500 1 1.18
8 3 Ambient 80 1500 7 0.98
9 1 Cool 60 2000 7 0.78
10 3 Cool 60 2000 1 1.36
11 1 Ambient 60 2000 1 1.85
12 3 Ambient 60 2000 7 0.62
13 1 Cool 80 2000 1 1.09
14 3 Cool 80 2000 7 1.10
15 1 Ambient 80 2000 7 0.76
16 3 Ambient 80 2000 1 2.10
class=design, type= FrF2.generators
```

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Screening

Half-Fractions of Two-Level Factorial Designs

Checking the Alias Pattern

```
> mod1 <- lm( y - (.)^4, data = soup)
> aliases(mod1)
A = B:C:D:E
B = A:C:D:E
C = A:B:D:E
D = A:B:C:E
 E = A:B:C:D
A:B = C:D:E
A:C = B:D:E
A:D = B:C:E
A:E = B:C:D
 B:C = A:D:E
 B:D = A:C:E
 B:E = A:C:D
C:D = A:B:E
C:E = A:B:D
 D:E = A:B:C
```

Introduction Half-Fractions of Two-Level Factorial Designs

Paradigms that Simplify the Interpretation of Results

- Effect Sparsity Principle—Box and Meyer (1986)
- · Hierarchical Ordering Principle-Wu and Hamada(2000)
- Effect Heredity Principle-Hamada and Wu (1992)

John Lawson FTC Short Course - Design and Analysis of Experiments with

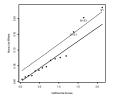
Screening

Half-Fractions of Two-Level Factorial Designs

Analyzing the Data

lm.default(formula = y ~ (.)^2, data = soup)

ALL 16 residuals are 0: no residual degrees of freedom:


Coefficients:

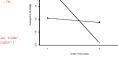
(Intercept)	1.22625	NA	NA.	
A1	0.07250	NA	NA.	3
n1	0.04375	NA	NA.	3
Cl	0.01875	NA	NA.	3
D1	-0.01875	NA	NA.	3
E1	0.23500	NA	NA.	3
A1:B1	0.00750	NA	NA.	3
A1:C1	0.04750	NA	NA.	3
A1:D1	0.01500	NA	NA.	3
A1:E1	0.07625	NA	NA.	
B1:C1	-0.03375	NA	NA.	3
B1:D1	0.08125	NA	NA.	3
B1:E1	0.20250	NA	NA.	3
C1:D1	0.03625	NA	NA.	3
C1:E1	-0.06750	NA	NA.	
D1:E1	0.15750	NA	NA.	3

Introduction Half-Fractions of Two-Level Factorial Designs

Half-Normal Plot of Coefficients

- > library(daewr)
- > LGB(coef(mod2)[-1], rpt=FALSE)

4 D 3 4 D 3


Screening

Half-Fractions of Two-Level Factorial Designs

FTC Short Course - Design and Analysis of Experiments with F

Interpretation of Results

- > soup <- FrF2(16, 5, generators = "ABCD", factor.names =
- > soup <- Pr#2(16, S, generators "AMCD", factor.names -+ list(Portace(1,3),Temper("Ocol", *Ambient"), NixTimese(6,80), * BatchNt+c(1500,2000), delay-c(7,11), randomis FALSE) > y <- c(1,3), 1,15, -97, 1,70, 1.47, 1,81, 18, .98, .78, * 1,36, 1,85, .62, 1.09, 1.10, .76, 2.10) * library(Oh.base)
- > soup <- add.response(soup , y)
 > delay <- as.numeric(sub(-1, 7, soup\$delay))
- > temp <- soup\$Temp
- > interaction.plot(delay, temp, soup\$v, type="b".
- + main="Interaction Plot for Mixing Temperature by Delay time", + xlab="Delay Time (days)", ylab="Average S.D. Fill Weight")

One-Quarter and Higher Fractions of Two-Level Factorial Designs

Confounding in Higher Order Fractions

- $\frac{1}{2^{p}}2^{k} = 2^{k-p} k$ is the number of factors, p is the fraction power
- In a one half fraction of a 2k experiment every effect that could be estimated was confounded with one other effect, thus one half the effects had to be assumed negligible in order to interpret or explain the results
- In a one quarter fraction of a 2^k experiment every effect that can be estimated is confounded with three other effects, thus three quarters of the effects must be assumed negligible in order to interpret or explain the results
- * In a one eighth fraction of a 2k experiment every effect that can be estimated is confounded with seven other effects, thus seven eights of the effects must be assumed negligible in order to interpret or explain the results, etc.

John Lawson FTC Short Course - Design and Analysis of Experi

Screening

One-Quarter and Higher Fractions of Two-Level Factorial Designs

Procedure for Constructing Higher Order Fractions

Creating a 2k-p Design

- Create a full two-level factorial in k-p factors
- Add each of the remaining p factors by assigning them to a column of signs for an interaction among the first k-p columns

Example of Quarter Fraction

			X_D	X_E		
X_A	X_B	X_C	$X_A X_B$	$\widetilde{X_AX_C}$	X_BX_C	$X_A X_B X_C$
			+	+	+	
+	-	-	-	-	+	+
-	+	-	-	+	-	+
+	+	-		-	-	-
		+	+			+
+	-	+	-	+	-	-
-	+	+	-	-	+	-
	4					

4 D 3 4 D 3

Screening

Example of Quarter Fraction

Introduction

Hall-Fractions of 1 wo-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Example of Quarter Fraction

$$D=AB \text{ and } E=AC$$

$$I=ABD \text{ and } I=ACE$$
 the generators
$$I=ABD \text{ and } I=ACE$$
 since $I^2=I$
$$I=ABD(ACE)$$

$$I=AB\bar{D}=ACE=BCDE$$

$$I=AB\bar{D}=ACE=BCDE$$

the defining relation

awson

FTC Short Course - Design and Analysis of Experiments with I

Screening

Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Design
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confoundin,
Plackett-Burman and Model Robust Screening Designs

Create the Design in FrF2

```
> frac <- FrF2( 16, 6, generators = c("AB", "AC"),randomize=FALSE)
> frac
 A B C D E F
3 -1 1 -1 -1 -1 1
  1 1 -1 -1 1 -1
5 -1 -1 1 -1 1 -1
  1 -1 1 -1 -1 1
  1 1 1 -1 1 1
11 -1 1 -1 1 -1 1
12 1 1 -1 1 1 -1
13 -1 -1 1 1 1 -1
14 1 -1 1 1 -1 1
15 -1 1 1 1 -1 -1
16 1 1 1 1 1 1
class=design, type= FrF2.generators
```

One-Quarter and Higher Fractions of Two-Level Factorial Designs

View the Alias Structure

```
> y <- runif( 16, 0, 1 )
> aliases( lm( y - (.)^3, data = frac) )
A - D:P - C:P
B = C:E:F = A:E
 C = B:E:F = A:F
 R = A:R = B:C:F
 F = A:C = B:C:E
 A:D = C:D:F = B:D:E
 B:C = E:F = A:B:F = A:C:E
 B:D = A:D:E
 B:F = C:E = A:B:C = A:E:F
 C:D = A:D:F
 D:E = A:B:D
D:F = A:C:D
 B:C:D = D:E:F
 B:D:F = C:D:E
```

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Screening

One-Quarter and Higher Fractions of Two-Level Factorial Designs

Some Generators Better than Others

```
> frac <- FrF2( 16, 6, generators = c("ABC", "BCD"),randomize=FALSE)
> aliases( lm( y - (.)^3, data = frac) )
A = B:C:E = D:E:F
 B = A:C:E = C:D:F
 C = B:D:F = A:B:E
 D = A:E:F = B:C:F
 E = A:D:F = A:B:C
 F = A:D:E = B:C:D
 A:C = B:E
 A:D = E:F
 A:E = B:C = D:F
 A:F = D:E
 p·n = C·F
 B:F = C:D
 A:B:D = A:C:F = B:E:F = C:D:E
 A:B:F = A:C:D = B:D:E = C:E:F
```

Criteria for Choosing Generators

- Resolution-Box and Hunter(1961)
- Minimum Aberration-Fries and Hunter 1980
- Maximum Number of Clear Effects-Chen et. al.(1993)

Screening

Criteria for Choosing Generators

Resolution-Shortest Word in the Defining Relation

Resolution III Main effects confounded with two-factor interactions

Resolution IV Main effects confounded with three-factor interactions, two-factor interactions confounded with other two-factor interactions

Resolution V Main effects and two-factor interactions estimable. assuming three factor and higher order interactions negligible

Resolution R Each subset of R-1 factors forms a full factorial possibly replicated

Criteria for Choosing Generators for Fractional Factorial Designs

FrF2 Default-Minimum Aberration Design

```
> ## maximum resolution minimum aberration design with 9 factors in 32 runs
> ## show design information instead of design itself
Design: 9-4.1
   32 runs, 9 f
Resolution IV
                   factors,
   Generating columns: 7 11 19 29
NLP (3plus): 0 6 8 0 0 , 8 clear 2fis
Factors with all 2fis clear: J
                                                                  two-factor
$aliased$legend
[1] "A-A" "B-B" "C-C" "D-D" "E-E" "F-F" "G-G" "N-H" "J-J"
SaliamedSmain
character(0)
SaliamedSfi2
```

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experin

Screening

"AN-HE" "CD-FG"

"CE-FH" "CG-DF"

FrF2 Option-Maximum Number of Clear Effects

```
> ## maximum number of free 2-factor interactions instead of minimum aberration
> ## show design information instead of design itself
>design.info(FrF2(32,9,MaxC2=TRUE))
```

\$catlg.entry

161 *ag=80* [11] "CH=EF"

```
Design: 9-4.2
  32 runs, 9 factors,
   Resolution IV
   Generating columns: 7 11 13 30
WLP (3plus): 0 7 7 0 0 , 15 clear 2fis
Factors with all 2fis clear: E J
```

15 Clear two-factor

Saliased

\$aliased\$legend [1] "A=A" "B=B" "C=C" "D=D" "E=E" "F=F" "G=G" "H=H" "J=J"

SaliasedSmain character(0)

SaliasedSfi2 [1] "AB=CF=DG" "AC=BF=DH" "AD=BG=CH" "AF=BC=GH" "AG=BD=FH" "AH=CD=FG" "BH=CG=DF"

Example of One-eighth Fraction

Iron Oxide Coated Sand (IOCS) used to remove arsenic from ground water in simple household filtration systems. Coating solution made of ferric nitrate and sodium hydroxide with NAOH added to control pH.

Ramakrishna et. al. (2006) conducted experiments to optimize The coating process.

Screening

Factors and Levels

Table 6.7 Factors and Levels for Arsenic Removal Experiment

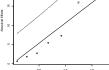
		L€	eveis
Label	Factors	-	+
A	coating pH	2.0	12.0
В	drying temperature	110°	800°
C	Fe concentration in coating	0.1 M	2 M
D	number of coatings	1	2
E	aging of coating	4 hrs	12 days
F	pH of spiked water	5.0	8.0
G	mass of adsorbent	$0.1 \mathrm{~g}$	1 g

Create Design with FrF2 in Coded Factor Levels

```
> arsrm<-FrF2(8,6,generators = c("AB", "AC", "BC"), randomize=FALSE)
```

- > y<-c(69.95, 58.65, 56.25, 53.25, 94.40, 73.45, 10.0, 2.11)
- > library(DoE.base)
- > arsrm2<-add.response(arsrm,y)
- > arsrm2 ABCDEF 1 -1 -1 -1 1 1 1 69.95
- 2 1 -1 -1 -1 -1 1 58.65 3 -1 1 -1 -1 1 -1 56.25
- 4 1 1 -1 1 -1 -1 53.25
- 5 -1 -1 1 1 -1 -1 94.40 6 1 -1 1 -1 1 -1 73.45
- 7 -1 1 1 -1 -1 1 10.00
- 8 1 1 1 1 1 1 2.11
- class=design, type= FrF2.generators
- 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with F


Screening

Analysis of the Data

- > Lmod<-lm(y ~ (.)^2,data=arsrm2)
- > estef<-coef(Lmod)[c(2:7,12)] > library(daewr)
- > LGB(estef,rpt=FALSE)
- > aliases(Lmod)

A = B:D = C:E

- B = C:F = A:D C = B:F = A:E D = E:F = A:B E = D:F = A:C F = B:C = D:E A:F = B:E = C:D
- Absoulte Effects 0

Half Normal Scores

Possible Interpretations of Results from 'Effect Heredity'

	Important factors	Optimal Levels
1.	B – Drying Temperature & F – PH of Spiked Water	Low Drying Temp. and Low PH
2.	B – Drying Temperature & BC interaction C – Fe concentration in coating	Low Drying Temp. High Fe Conc.
3.	F – PH of Spiked Water & CF interaction	Low PH High Fe conc.

Screening

Fractional Factorials in Split-Plot Designs

 $(I + ABC) \times (I + PQR) = I + ABC + PQR + ABCPQR$

Resolution III

Split-Plot Confounding

P = -QR when whole-plot factor A is at its low level P = +OR when the whole-plot factor A is at its high level

-(I :	= AE	(C)		
A	B	C		
-	-	+	I = -PQR	
+	-	-	I = +PQR	D 1 . 6
-	+	-	I = -PQR	Resolution III, but less aberration
+	+	+	I = +POR	

 $P = AOR \Rightarrow (I + ABC)(I + APQR) = I + ABC + APQR + BCPQR$

Screening

Creating a Minimum Aberration Split-Plot Fractional Factorial with FrF2

```
> library(FrF2)
> SSFF2 <-PrF2(16,6, NFe = 4, nfsc.NF = 3, factor.names = c("A","R","C","F","Q","R"))
> crint(SFF2)
                                   9.3.1 1 -1 -1 -1 1 1 1
11.3.3 1 -1 -1 -1 1 -1 -1
10.3.2 1 -1 -1 -1 1 -1 -1
    4 10.3.2 1 -1 -1 -1 1 -1
Fun.no run.no.ndi.rp AR C P Q R
Class-design, type= FFF2.splitplot
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
```

Criteria for Choosing Generators for Fractional Factorial Designs

Checking the Alias Pattern

```
> aliases(lm( y - (.)^3, data=SPFF2))
A = P:0:R = B:C
B = A:C
C = A:B
P = A:Q:R
Q = A:P:R
 R = A:P:Q
A:P = 0:R = B:C:P
A:Q = P:R = B:C:Q
A:R = P:Q = B:C:R
B:P = A:C:P = C:Q:R
B:Q = A:C:Q = C:P:R
B:R = A:C:R = C:P:Q
C:P = A:B:P = B:Q:R
C:Q = A:B:Q = B:P:R
C:R = A:B:R = B:P:Q
```

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Screening

Analyzing a Split-Plot Fractional Factorial

8.5.2 Analysis of a Fractional Factorial Split-Plot

Table 8.10 Fractional Factorial Split-Plot Design for Gear Distortion

Α	В	C	Q	-	-	+	+
-	-	-			X	Х	
1				x			×
-	+	-		X			X
+	+	-			X	X	
-	-	+		X			X
+	-	+			X	х	
-	+	+			X	X	
+	+	+		X			х

The defining relation is I = ABCPQ, and the response was the dishing of the gears.

Whole-Plot and Sub-Plot Effects

Table 8.11 Estimable Effects for Gear Distortion Experiment

Whole-Plot	Sub-Plot
Effects	Effects
A + BCPQ	P + ABCQ
B + ACPQ	Q + ABCP
C + ABPQ	AP + BCQ
AB + CPQ	AQ + BCP
AC + BPQ	BP + ACQ
BC + APQ	BQ + ACP
ABC + PQ	CP + ABQ
	CQ + ABP

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Screening

Analysis with R

> apexp <- PFP2(16,5,WPe4,nfac,WP43, factor.name=r("A","P","C","P","O"),randomize=P > yc=(18.6,21.6,27.5,17.0,22.5,15.0,18.0,22.6,13.6,-4.5,17.5,14.5,0.5,5.5,24.0,13.5) > aol-culi y-AM2CCP*Q, data-apexp) > smmary(aol)

im.default(formula = y - A * B * C * P * Q, data = spexp) ALL 16 residuals are 0: no residual degrees of freedom!

Estimate Std. Error t value Pr(>|t|) 15.4062 -4.9063 -0.1562 NA NA C1 P1 Q1 A1:B1 A1:C1 3.9688 -2.3438 -3.4062 Whole Plot Differen B1:C1 0.4062

Separate Normal Plots of Whole-Plot and Sub-Plot Effects

4 D 3 FTC Short Course - Design and Analysis of Experiments with R

Screening

Augmenting Fractional Factorial Designs to Resolve Confounding

Augmenting by Foldover

```
Design Augmented by 2^{10.3}_{JJ} Design with Signs Reversed on Factor B Run A B C D E F
              * + - * - - defining relation is
                                      I = ABD = ACE = BCF = DEF = BCDE = ACDF = ABEF
                                          D confounded with AB
                                      defining relation is
                                      I = -ABD = ACE = -BCF = DEF = -BCDE = ACDF = -ABEF
                                       defining relation is
                                                                     R is clear and
```

I = ACE = DEF = ACDF D no longer confounded with AB

Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Laborators of Parker Confounding Augmenting Fractional Factorial Designs to Resolve Confounding

Augmenting the IOCS Experiment

- > y<-c(69.95,58.65,56.25,53.25,94.4,73.45,10.0,2.11,16.2,52.85,9.05,31.1,7.4,
- + 9.9,10.85,48.75)
- > arsrm4<-add.response(arsrm3,y)

> 4	rar							
	Α	В	C	fold	D	Ε	F	У
				original				
				original				
				original				
4	1	1	-1	original	1	-1	-1	53.25
				original				
				original				
				original				
				original				
9	1	1	1	mirror	-1	-1	-1	16.20
				mirror				
				mirror				
				mirror				
				mirror				
				mirror				
				mirror				
16	-1	-1	-1	mirror	-1	-1	-1	48.75
cla	aa.	de	aign	a, type= 1	FrF	2.gu	ner	rators.fo

Combining a resolution III design with a mirror image (signs reversed on all factors) results in a resolution IV design where no main effect is confounded with a two-factor interaction

4 D 3 4 D 3

FTC Short Course - Design and Analysis of Experim

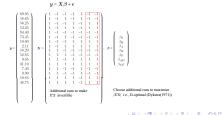
Screening

Augmenting Fractional Factorial Designs to Resolve Confounding

Alternative Explanations after Analysis of Combined Data

AD confounded with CF in the combined data

$$\begin{array}{l} (F,B,A,AD) \\ \% \ removal = 37.76 - 12.99 \left(\frac{pHs-7.0}{2.0}\right) - 11.76 \left(\frac{temp-455^{\circ}}{345^{\circ}}\right) \\ - 8.89 \left(\frac{pHr-7.0}{5.0}\right) - 10.00 \left(\frac{pHs-7.0}{2.0}\right) \left(\frac{mmber\ coats-7.5}{5.0}\right) \end{array}$$



$$\begin{array}{l} (F,\,B,\,A,\,CF) \\ \% \ removal = \!\!\!\! 37.76 - 12.99 \left(\!\!\! \frac{pHs - 7.0}{2.0} \!\!\!\! \right) \!\!\!\! - \!\!\!\! 11.76 \left(\!\!\! \frac{temp - 455^{\circ}}{345^{\circ}} \!\!\!\! \right) \\ - 8.89 \left(\!\!\! \frac{pHc - 7.0}{5.0} \!\!\!\! \right) \!\!\!\! - \!\!\!\! 10.99 \left(\!\!\!\! \frac{Fc - 1.05M}{0.95M} \right) \!\!\!\! \left(\!\!\! \frac{pHs + 7.0}{2.0} \!\!\!\! \right) \end{array}$$

Augmenting Fractional Factorial Designs to Resolve Confounding

Augmentation by Optimal Design

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Screening

Augmenting Fractional Factorial Designs to Resolve Confounding

Change Factors to Numeric in New Data Frame

```
> A <- (as.numeric(ararm3$A)-1.5)/.5
> B <- (as.numeric(ararm3$B)-1.5)/.5
> C <- (as.numeric(arsrm3$C)-1.5)/.5
> E <- (as.numeric(arsrm3SE)-1.5)/.5
> F <- (as.numeric(ararm3$F)-1.5)/.5
> Block<-arsrm3$fold
> augmn<-data.frame(A.B.C.D.E.F.Block)
> augmn
  -1 -1 -1 1 1 original
  1 -1 -1 -1 -1 1 original
3 -1 1 -1 -1 1 -1 original
   1 1 -1 1 -1 -1 original
  -1 -1 1 1 -1 -1 original
  1 -1 1 -1 1 -1 original
7 -1 1 1 -1 -1 1 original
8 1 1 1 1 1 1 original
   1 1 1 -1 -1 -1 mirror
10 -1 1 1 1 1 -1 mirror
11 1 -1 1 1 -1 1
                    mirror
12 -1 -1 1 -1 1 1
                    mirror
13 1 1 -1 -1 1 1 mirror
15 1 -1 -1 1 1 -1
                     mirror
```

Augmenting Fractional Factorial Designs to Resolve Confounding

Use Federov Algorithm in AlgDesign Package to Find 8 Additional Runs that Maximize the Determinant

```
> library(AlgDesign)
> cand<-gen.factorial(levels = 2, nVar = 6, varNames = c("A", "B", "C", "D", "E", "F"))
> Block<-rep('cand',64)
> cand<-data.frame(A=cand$A, B=cand$B, C=cand$C, D=cand$D, E=cand$E, F=cand$F,
+ Block)
> all<-rbind(augun, cand)
> optim<-optFederov( \sim A + B + F + I(A*D) + I(C*F), data=all, nTrials =24,
+ criterion = "D", nRepeats =10, augment=TRUE, rows=fr)
> newruns<-optimSdesign[ 17:24, ]
> newruns
   A B C D E F Block
18 1 -1 -1 -1 -1 cand
23 -1 1 1 -1 -1 -1 cand
32 1 1 1 1 -1 -1 cand
43 -1 1 -1 1 1 -1 cand
49 -1 -1 -1 -1 -1 1 cand
60 1 1 -1 1 -1 1 cand
```

4 D 3 4 D 3

63 -1 1 1 1 -1 1 cand

John Lawson FTC Short Course - Design and Analysis of Experiments with F

Screening

Plackett-Burman and Model Robust Screening Designs

Plackett-Burman Designs Obtained by Cyclically Rotation

Table 6.9 Factor Levels for First Run of Plackett-Burman Design Run Size | Factor Levels

rean one	Tuccor Levels
12	++-+++-
20	++++++-
24	++++

Plackett-Burman and Model Robust Screening Designs

Creating a PB Design with FrF2

> library(FrF2)

> pb(nruns = 12, randomize=FALSE)

	A	В	C	D	Ε	F	G	H	J	K	L	
1	1	1	-1	1	1	1	-1	-1	-1	1	-1	
2	-1	1	1	-1	1	1	1	-1	-1	-1	1	
3	1	-1	1	1	-1	1	1	1	-1	-1	-1	
4	-1	1	-1	1	1	-1	1	1	1	-1	-1	
5	-1	-1	1	-1	1	1	-1	1	1	1	-1	
6	-1	-1	-1	1	-1	1	1	-1	1	1	1	
7	1	-1	-1	-1	1	-1	1	1	-1	1	1	
8	1	1	-1	-1	-1	1	-1	1	1	-1	1	
9	1	1	1	-1	-1	-1	1	-1	1	1	-1	
10	-1	1	1	1	-1	-1	-1	1	-1	1	1	
11	1	-1	1	1	1	-1	-1	-1	1	-1	1	
12	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	

class=design, type= pb

Screening

Example use of a Plackett-Burman Design

Hunter et al. (1982) used a Plackett-Burman Design to study the fatigue life of weld-repaired castings.

Table 6.11 Design Matrix and Lifetime Data for Cast Fatigue Experiment

Run	A.	В	C	D	E	F	G	cS	c9	c10	c11	
- 1	+		+	+	+			-	+	-	+	4.733
2	-	+	+	+	-	-	-	+	-	+	+	4.625
3	+	+	+	-	-	-	+	-	+	+	-	5.899
4	+	+	-	-	-	+	-	+	+	-	+	7.000
5	+	-	-	-	+	-	+	+	-	+	+	5.752
6	-	_	-	+	-	+	+	-	+	+	+	5.682
7	-	-	+	-	+	+	-	+	+	+	-	6.607
8	-	+	-	+	+	-	+	+	+	-	-	5.818
9	+	-	+	+	-	+	+	+	-	-	-	5.917
10	-	+	+	-	+	+	+	-	-	-	+	5.863
11	+	+	-	+	+	+	-	+	-	+	-	6.058
12	l .	_	_	_	_	_	_	_	_	_	_	4.800

Note: This design is created using a different first row than FrF2 uses.

Plackett-Burman and Model Robust Screening Designs

Recall the Design from the BsMD package

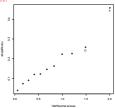
```
> data( PB12Des, package = "BsMD" )
> colnames(PB12Des) <- c("c11", "c10", "c9", "c8", "G", "F", "E", "D", "C", "B", "A")
> castf <- PB12Des[c(11,10,9,8,7,6,5,4,3,2,1)]
> castf
   A B C D E F G c8 c9 c10 c11
   1 -1 1 1 1 -1 -1 -1 1 -1 1
2 -1 1 1 1 -1 -1 -1 1 -1 1
  1 1 1 -1 -1 -1 1 -1 1
  1 1 -1 -1 -1 1 -1 1 1
                        -1
  1 -1 -1 -1 1 -1 1 1 -1
 -1 -1 -1 1 -1 1 1 -1 1 1
 -1 -1 1 -1 1 1 -1 1 1 -1
 10 -1 1 1 -1 1 1 1 -1 -1
```

4 D 3 4 D 3

-1 1

John Lawson FTC Short Course - Design and Analysis of Experiments with F

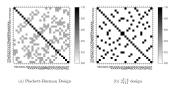
Screening


Analysis Shows only Factor F Possibly Significant

- > Vc-c/4 733 4 625 5 899 7 0 5 752 5 682
- + 6.607, 5.818, 5.917, 5.863, 6.058, 4.809)

11 1 1 -1 1 1 1 -1 -1 -1 1 -1 12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

- > castf<-cbind(castf,y)
- > modpb<-lm(y~ (.), data=castf) > library(daewr)
- > cfs<-coef(modpb)[2:12]
- > names<-names(cfs)
- > halfnorm(cfs, names, alpha = .35,


 $R^2 = .55$

Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Partially Confounded Main Effects Allows Estimation of Some Interactions by Regression

Figure 6.13 Color Map Comparison of Confounding between PB and FF Designs

. . .

TO A STATE OF THE STATE OF THE

Screening

Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Factional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confoundin
Plackett Burman and Model Robust Screening Designs

Jones and Nachtsheim(2011) Propose a Forward Stepwise Regression Algorithm Guided by Effect Heredity

- Model matrix includes main effects and two-factor interactions
- When an interaction enters as the next term in the model, main effects involved in that interaction are included to preserve effect heredity

Plackett-Burman and Model Robust Screening Designs

istep, fstep, bstep Functions in daewr Package Perform this Algorithm - FG interaction first term entered

```
> library(daewr)
> trm<-ihstep(v.des)
Call:
lm(formula = y ~ (.), data = d1)
Residuals:
Min 10 Median 30 Max
-0.49700 -0.07758 0.02650 0.07867 0.44500
Coefficients:
-0.45875 0.07260 -6.319 0.000228 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
Residual standard error: 0.2515 on 8 degrees of freedom
Residual standard error: 0.2010 on 0 degrees of free Multiple R-squared: 0.9104, Adjusted R-squared: F-statistic: 27.08 on 3 and 8 DF, p-value: 0.0001531
```

John Lawson FTC Short Course - Design and Analysis of Experiments with

Screening

Plackett-Burman and Model Robust Screening Designs

This Interaction was Detected with Forward Stepwise Regression

Table 6.13 Summary of Data from Cast Fatigue Experiment

Factor F	Factor G		
	-	+	
	4.733	5.899	
-	4.625	5.752	
	4.809	5.818	
	6.058	5.682	
+	7.000	5.917	
	6.607	5.863	

Plackett-Burman and Model Robust Screening Designs

Alternative to Plackett-Burman when 16 Runs Needed

Jones and Montgomery (2010) have proposed alternate 16-run screening designs for 6, 7, and 8 factors

```
> library(daewr)
> ascr <-Altscreen(nfac = 6, randomize = FALSE)
> head(ascr)
 ABCDEF
1 1 1 1 1 1 1
2 1 1 -1 -1 -1 -1
3 -1 -1 1 1 -1 -1
4 -1 -1 -1 -1 1 1
5 1 1 1 -1 1 -1
6 1 1 -1 1 -1 1
```

nfac = 6, 7, or 8

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Screening

Plackett-Burman and Model Robust Screening Designs

Alternative to Plackett-Burman when 16 Runs Needed

Li and Nachtsheim (2000) also developed 8-, 12-, and 16-run model robust screening designs.

```
> library(daewr)
> MR8 <- ModelRobust('MR8m5q2', randomize = FALSE)
> head(MR8)
  ABCDE
1 -1 1 1 1 -1
2 -1 -1 -1 -1 -1
3 -1 1 -1 -1
4 1 1 1 1 1
5 1 1 -1 1 -1
6 -1 -1 -1 1 1
```

Main Effects Partially Confounded with Two-Factor Interactions in These Designs

Figure 6.16 Color Map Comparison of Confounding between Alternate Screening and Model Robust Designs

(a) Alternate Screening 7 factors

(b) Model Robust m=7, g=5

THE OF

10/10/12/12/ 2 7/40·

Optimization

Part VI

Experimenting to Find Optima

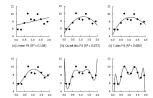
Outline of Part VI

- 6 Experimenting to Find Optima
 - Introduction
 - The Quadratic Response Surface Model
 - Design Criteria
 - Standard Designs for Second Order Models
 - Non-standard Designs
 - Fitting the Response Surface Model
 - Determining Optimum Conditions
 - Split-Plot Response Surface Designs
 - Screening to Optimization

John Lawso

Optimization

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Mod
Non-standard Designs
Fitting the Response Surface Model


Response Surface Methods–A Package of Statistical Design and Analysis Tools

- Design and collection of data to fit an equation to approximate the relationship between factors and responses
- Regression analysis to fit a model to describe the data
- Examination of the fitted relationship through graphical and numerical techniques

Introduction
The Quadratic Response Surface Model

standard Designs for Second Order Model: Von-standard Designs Fitting the Response Surface Model Determining Optimum Conditions

Power Series Models to Approximate Relationships

- 4 B > 4 B > 4 B > 4 B > 1 B + 49 0 0

FTC Short Course - Design and Analysis of Experiments with

Optimization

The Quadratic Response Surface Model

Standard Designs for Second Order Mode Non-standard Designs Fitting the Response Surface Model

Second Order Taylor Series Expansion

10.2.1 Empirical Quadratic Model

$$y = f(x_1, x_2) + \epsilon$$
 (10.1)

$$\begin{split} f(x_1,x_2) &\approx f(x_{10},x_{20}) + (x_1-x_{10}) \frac{\mathcal{I}(f(x_1,x_2))}{2\pi t} \Big|_{x_1=x_{2100,2}=x_{210}} \\ &+ (x_2-x_{20}) \frac{\mathcal{I}(f(x_1,x_2))}{2\pi t} \Big|_{x_1=x_{2100,2}=x_{210}} \\ &+ \frac{(x_1-x_{10})^2}{2} \frac{\mathcal{I}^2}{2} \frac{f(x_1,x_2)}{2\pi t} \Big|_{x_1=x_{210,2}=x_{210}} \\ &+ \frac{(x_2-x_{20})^2}{2} \frac{\mathcal{I}^2}{2} \Big|_{x_1=x_{210,2}=x_{210}} \frac{\mathcal{I}^2}{2\pi t} \Big|_{x_1=x_{210,2}=x_{210}} \\ &+ \frac{(x_1-x_{10})(x_2-x_{20})}{2\pi t} \frac{\mathcal{I}^2}{2\pi t} \Big|_{x_1=x_{210,2}=x_{210}} \Big|_{x_1=x_{210,2}=x_{210,2}} \end{aligned}$$

The Quadratic Response Surface Mode

Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Solit-Plot Response Surface Designs

Results - The General Quadratic Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \epsilon$$

(10.3)

where $\beta_1 = \frac{\partial f(x_1,x_2)}{\partial x_1}\Big|_{x_1=x_{10},x_2=x_{20}}$ etc. If the region of interest is of moderate

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j}^k \sum_{j < j} \beta_{ij} x_i x_j + \epsilon, \tag{10.4} \label{eq:10.4}$$

4 B > 4 B > 4 B > 4 B > 3 B + 99 C+

in Lawson

The Short course - Design and Analysis of Experiments with

Optimization

Introduction The Quadratic Response Surface Model

Design Criteria Standard Designs for Second Order Mode Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions

Possible Quadratic Surfaces

Figure 10.1 Surfaces That Can Be Described by General Quadratic Equation

Quadratic Models as Approximations

 $[P] = [R]_0 \frac{k_1}{k_1-k_2} \{ \exp(-k_1t) - \exp(-k_2t) \}.$

If k₁ and k₂ can be given as functions of temperature by the Arrhenius expressions:

$$k_1 = 0.5 \exp \left[-10,000 \left(1/T - 1/400\right)\right]$$
 and $k_2 = 0.2 \exp \left[-12,500 \left(1/T - 1/400\right)\right]$,

Optimization

Matrix Representation of the Quadratic Model

10.2.2 Design Considerations

Quadratic Model
$$\mathbf{y} = \mathbf{x}\mathbf{b} + \mathbf{x}'\mathbf{B}\mathbf{x} + \epsilon$$

where
$$\mathbf{x}' = (1, x_1, x_2, \dots, x_k), \mathbf{b}' = (\beta_0, \beta_1, \dots, \beta_k)$$

$$\mathbf{B} = \left(\begin{array}{cccc} \beta_{11} & \beta_{12}/2 & \cdots & \beta_{1k}/2 \\ & \beta_{22} & \cdots & \beta_{2k}/2 \\ & & \ddots & \\ & & & \beta_{kk} \end{array} \right)$$

Design Consideration for the Linear Model

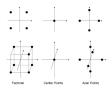
Linear Model y = xb

- the design points are chosen to minimize the variance of the fitted coefficients $\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{v}$. $\sigma^2(\mathbf{X}'\mathbf{X})^{-1}$
- design points should be chosen such that (X'X) matrix is diagonal like the 2^k 2^{k-p} designs diagonal elements of $(X'X)^{-1}$ minimized

Optimization

Design Consideration for the Quadratic Model

$$Var[\hat{y}(\mathbf{x})] = \sigma^2 \mathbf{x}' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}$$


- · Goal is to equalize the variance of a predicted response over the region of interest
- Rotatable Design-variance of a predicted value is only a function of the distance from design center
- Uniform Precision Design-variance of predicted value is near equal within radius of one in coded factor units

Standard Designs for Second Order Models

Central Composite Designs

10.3.1 Central Composite Design

Figure 10.2 Central Composite Design in Two and Three Dimensions

4 D 3 4 D 3

Optimization

Standard Designs for Second Order Models

UP Property of Central Composite Designs

Central Composite Design

By choosing the distance from the origin to the axial points (α in coded units) equal to $\sqrt[4]{F}$ where F is the number of points in the factorial portion of the design, a central composite design will be rotatable. By choosing the correct number of center points the central composite design will have the uniform precision property.

Standard Designs for Second Order Models

Example of a Central Composite Design

Table 10.1 Central Commonite Denian in Coded and Actual Units for Cement Work

Water/cement Black Liq. 0.230 0.120 0.350 0.120 0.080 120.0 0.330 0.180 0.080 124.5 0.330 0.120 0.330 0.180 0.120 121.0 0.350 0.180 0.120 132.0 0.100 117.0 0 0.100 117.0 10 0.340 0.150 -1.68 0 1.68 0 0.323 0.1500.100 109.5 0.100 0.340 0.100 0.100 120.0 0.340 0.200 0.100 121.0 16 -1.68 0.340 0.096 0.340 0.134 127.0 0 0.340 0.150 0.100 116.0 0.340 0.150 0.100 117.0

0.340 (actual level - center value)/(half range) $\pm 1.68 = \sqrt[4]{8}$

0.150 0.100 117.0

4 D > 100 - 12 - 12 - 2 - 990 John Lawson FTC Short Course - Design and Analysis of Experiments with R

Optimization

Standard Designs for Second Order Models

Variance Dispersion Graph Shows UP Characteristic

- > library(damer)
- > library(Vdoraph)
- number of design points= 20 number of design por number of factors= 3 Radius Maximum Minimum

[16,] 1.29903811 5.916603 [17,] 1.38564065 6.892934

1.47224319 8.097125

[1.1	0.00000000	3.326805	3.326805	3.326
[2,]	0.08660254	3.320828	3.320828	3.320
[3,]	0.17320508	3.303837	3.303837	3.303
[4,]	0.25980762	3.278640	3.278640	3.278
[5,]	0.34641016	3.249923	3.249923	3.249
[6,]	0.43301270	3.224241	3.224241	3.224
[7,]	0.51961524	3.210026	3.210026	3.210
[8,]	0.60621778	3.217583	3.217583	3.217
[9,]	0.69282032	3.259089	3.259089	3.259
[10,]	0.77942286	3.348596	3.348596	3.348
[11,]	0.86602540	3.502029	3.502029	3.502
[12,]	0.95262794	3.737186	3.737186	3.737
	1.03923048	4.073740	4.073740	4.073
[14,]	1.12583302	4.533236	4.533236	4.533

Variance Dispersion Graph

5.916603 5.916603

8.097125

Standard Designs for Second Order Models

Creating a Central Composite Design in R

```
> rotd <- ccd(3, n0 = c(4,2), alpha = "rotatable", randomize = FALSE)
  run.order std.order xl.as.is x2.as.is x3.as.is Block
                   1 -1.000000 -1.000000 -1.000000
2 1.000000 -1.000000 -1.000000
                    3 -1.000000 1.000000 -1.000000
                    4 1.000000 1.000000 -1.000000
                    5 -1.000000 -1.000000 1.000000
                    6 1.000000 -1.000000 1.000000
7 -1.000000 1.000000 1.000000
   13
14
                    3 0.000000 -1.681793 0.000000
4 0.000000 1.681793 0.000000
16
          .
                    5 0.000000 0.000000 -1.681793
                    6 0.000000 0.000000 1.681793
18
```

7 0 000000 0 000000 0 000000 8 0.000000 0.000000 0.000000

> 40 - 40 - 42 - 42 - 2 - 990 John Lawson FTC Short Course - Design and Analysis of Experiments with R

Optimization

Standard Designs for Second Order Models

Creating a Central Composite Design in R

- > ccd.up<-ccd(y-x1+x2+x3,n0=c(4,2),alph="rotatable",coding=list(x1-(Temp-150)/10,
- + x2-(Press-50)/5,x3-(Rate-4)/1),randomize=FALSE)
- > head(ccd.up)

1	1	1	140	45	3	NA	1
2	2	2	160	45	3	NA	1
3	3	3	140	55	3	NA	1
4	4	4	160	55	3	NA	1
5	5	5	140	45	5	NA	1

Data are stored in coded form using these coding formulas ...

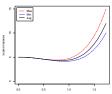
- x1 (Temp 150)/10
- x2 (Press 50)/5
- x3 (Rate 4)/1

Three Level Box-Behnken Designs

10.3.2 Box-Behnken Design

Table 10.2 Box-Behnken Design in Three Factors

0 0 0 14 0 0


40 × 40 × 42 × 42 × 2 × 99.0

Optimization

Creating a Box-Behnken Design in R

number of factors			
Radius	Maximum	Minimum	Average
[1,] 0.00000000			5.000000
[2,] 0.08550254	4.984477	4.984445	4.984458
[3,] 0.17320508			4.938825
[4,] 0.25980762			4.866083
[5,] 0.34641016	4.776000	4.768000	4.771200
[6,] 0.43301270			4.661133
[7,] 0.51961524	4.569125	4.528625	4.544825
[8,] 0.60621778		4.403195	4.433208
[9,] 0.69282032	4.416000	4.288000	4.339200
[10,] 0.77942286	4.400727	4.195695	4.277708
[11,] 0.86602540		4.140525	4.265625
[12,] 0.95262794	4.596352	4.138820	4.321833
[13,] 1.03923048			
[14,] 1.12583302	5.260109	4.367570	4.724583
[15,] 1.21243557	5.039134	4.638625	5.118825
[16.] 1.29903811	6.625977	5.043945	5.676758
[17,] 1.38564065	7.656000	5.608000	6.427200
[18,] 1.47224319			7.400958
[19,] 1.55884573	10.599125	7.318625	8.630825
[20,] 1.64544827		8.522570	10.151583
[21,] 1.73205081	15.000000	10.000000	12.000000

Variance Dispersion Graph

Standard Designs for Second Order Models

Small Composite Designs

10.3.3 Small Composite Design

Figure 10.6 Graphical Comparison of CCD and Small Composite (with I = AB) for

4 D 3 4 D 3

Optimization

Standard Designs for Second Order Models

Hybrid Designs

10.3.4 Hybrid Design

Roquemore (1976) developed hybrid designs that require even fewer runs than the small composite designs. These designs were constructed by making a central composite design in k-1 factors and adding a kth factor so that the X'X has certain properties and the design is near rotatable.

Table 10.4 Roquemore 310 Design

run	x_1	x_2	x_3
1	0	0	1.2906
2	0	0	-0.1360
3	-1	-1	0.6386
4	1	-1	0.6386
5	-1	1	0.6386
6	1	1	0.6386
7	1.736	0	-0.9273
8	-1.736	0	-0.9273
9	0	1.736	-0.9273
10		1 700	0.0070

Standard Designs for Second Order Models

Minimal Run Response Surface Designs Available in R package Vdgraph

Small Composite Designs:

SCDDL5	Draper and Lin's Design for 5-factors	D310	Roquemore's hybrid design D310
SCDH2	Hartley's Design for 2-factors	D311A	Roquemore's hybrid design D311A
SCDH3	Hartley's Design for 3-factors	D311B	Roquemore's hybrid design D311B
SCDH4	Hartley's Design for 4-factors	D416A	Roquemore's hybrid design D416A
SCDH5	Hartley's Design for 5-factors	D416B	Roquemore's hybrid design D416B
SCDH6	Hartley's Design for 6-factors	D416C	Roquemore's hybrid design D416C
		D628A	Roquemore's hybrid design D628A
Hexagonal Design:			

Description Hexagonal Design in 2-factors

4 D 3 4 D 3

Optimization

Standard Designs for Second Order Models

Comparing Two Designs with Vdgraph

- > library(rsm)
- > ccd.up<-ccd(y-x1+x2+x3,n0=c(4,2),alph="rotatable",coding=list(x1-(Temp-150)/10,
- + x2-(Press-50)/5,x3-(Rate-4)/1),randomize=FALSE) > head(ccd.up)
- run.order std.order Temp Press Rate y Block

1	1	1	140	45	3	NA	1
2	2	2	160	45	3	NA	1
3	3	3	140	55	3	NA	1
4	4	4	160	55	3	NA	1
5	5	5	140	45	5	NA	1
6	6	6	160	45	5	NA	1

Data are stored in coded form using these coding formulas ...

- x1 (Temp 150)/10
- x2 (Press 50)/5 x3 - (Rate - 4)/1

Introduction The Quadratic Response Surface Model

Standard Designs for Second Order Models

Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs

Comparing Two Designs with Vdgraph

```
> library(Vdgraph)
> data(D310)
```

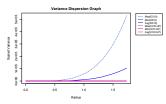
>	D310		
	×1	×2	20
1		0.000	
2	0.0000	0.000	-0.136
3	-1.0000	-1.000	0.638
4		-1.000	0.638
5	-1.0000	1.000	0.638
6	1.0000	1.000	0.638

7 1.7636 0.000 -0.9273 8 -1.7636 0.000 -0.9273 9 0.0000 1.736 -0.9273 10 0.0000 -1.736 -0.9273

> des<-transform(D310,Temp=10*x1+150, Press=5*x2+50,Rate=x3+4)

>	des					
	×1		×3			
1	0.0000	0.000	1.2906	150.000	50.00	5.2906
2		0.000		150.000		
3		-1.000	0.6386	140.000	45.00	4.6386
	1.0000		0.6386			
5	-1.0000					
	1.0000					
	1.7636		-0.9273			
8	-1.7636	0.000	-0.9273	132.364	50.00	3.0727
9			-0.9273			
20	0.0000	-1.736	-0.9273	150.000	41.32	3.0727

4 m > 4 m > 4 S > 4 S > 5 S A) d


Optimization

Introduction
The Quadratic Response Surface Model

Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions

Comparing Two Designs with Vdgraph

> Compare2Vdg(des[, 4:6],ccd.up[, 3:5],*D310*,*CCD.UP*)

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Mode
Non-standard Designs
Fitting the Response Surface Model

Standard Designs Inappropriate in Some Situations

10.5 Non-Standard Response Surface Designs

Some design situations do not lend themselves to the use of standard response surface designs

- 1. Region of experimentation is irregularly shaped
- 2. Not all combinations of factor levels are feasible
- 3. There is a nonstandard linear or nonlinear model

awson

FTC Short Course - Design and Analysis of Experiments with I

Optimization

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Moc
Non-standard Designs
Fitting the Response Surface Model

Irregular Design Regions

Example 1 - Irregularly shaped region

Figure 10.11 Experimental Region for Engine Experiment

Finite Number of Possible Design Points

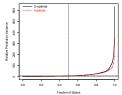
- 0	Comp-							
	ecnd	- 10	30	10.0	3."	HE	D01:	3080
	- 1	H	H	16	<b<sub>i</b<sub>	-13.721	23.H2	66.136
	- 2	11	ii.	- 10	CH ₂ Ps	-14.065	-0.066	56,547
	- 3	21	11	20	75.	-14.582	0.372	85,067
	- 4	H	H	10	20H;0C;H;	+14.993	1.005	96.053
	- 5	11	OCH ₂	25	CH ₂	-12.855	1.090	
	- 6	H	OCH ₂	×	CH ₂ Ps	-11428	1.115	99.002
	- 7	11	OCH,	25	75.	-13.129	1,654	96,053
	- 8	10	OCB ₂	36	20H,0C;H;	-13.480	2.321	100.002
	- 9	11	OC ₂ B ₂	10	CH ₂	-11.613	1.215	
	2.2	21		31	CHAPA	-12.583	1.358	101,079
	11	H	OC_2H_2	30	Ph.	-14.088	1.021	99,002
	12			20	2CH_OC.H.	-14.46	2.296	
	13	CHy	H	CHO	CHi	4.569	18.56	71.549
	14	CHy	11	CEs	CH ₂ Ph	-11.297	-0.675	96.6
	33	CH	11	CH	Ph.	-11.798	-0.334	96.62
	15	CHy	H	CHy	2CH ₂ OC ₂ H ₄	-11.167	0.415	564,647
	17	10	H	36	CHi	13.245	-0.609	67,654
	15	- 11	11	- 11	CH ₂ Ps	-63.56	-0.515	51,546
	22	21	11	20	75.	-14493	+0.563	88,547
	29	H	H	10	20H2OC2H2	-14,888	-1.479	99.002
	25	21	OCH.	20	CB	-11.414		77.02
	22	H	OCB _i	36	CHIPS	.13.121	-1.692	104.659
	23	11		- 31	Ph.			
	74	21	OCH,	31	TCH_OC.H.	-14002	-2.714	109,535
	25	H	OC_2H_2	10	CH ₂	-18.029	-1.990	29,542
	25	21	OCAB.	20	CB.Fs.	-11.74	-1,653	104,557
	27	H	OC_1B_1	30	Ph	13.329	1.902	104.659
	25	OCE,	OC/R	20	2CH ₂ OC ₂ H ₄	-12.637	-2.792	
	29	OCE;	OCH ₂	10	CH ₂	-12.118	/2.994	51.106
	30	OCB ₂	OCH ₂	25	CH ₂ Ph	-13.892	-2.865	106,200
-	31	OCE	OCB _i	36	Ph.	-14456	-2.026	103.22
	22	OCH ₂	OCH ₂	30	2CH ₂ OC ₂ H ₄	-14.594	-3.79	113,556
	33	CBS	11	Citie	CH	-8.299	-0.423	74,871
-0	31	CHy	H	CHo	CH ₂ Ph	-00.YT	-0.302	99,003
	35	CBS	11	CEL	15.	-11.488	-0.453	96.5
	38	CB ₂	H	CHI	2CH ₂ OC ₂ H ₄	41.808	-1.322	307.00

FTC Short Course - Design and Analysis of Experiments with F

Optimization

Non-standard Designs

Create the Design with optFederov function in AlgDesign


- > library(daewr) > data(qsar)
- > library(AlgDesign) > desgnl<-optFederov(~quad(.),data=qsar,nTrials=15,center=TRUE,
- > desgni<-optrederov(~quad(.),man=qua criterion="0",mRepeats=40) > desgn2<-optFederov(~quad(.),data=qsar,nTrials=15,center=TRUE, + criterion="1",nRepeats=40)
 > desgn2\$design
- Compound

1	1	-12.221	-0.162	64.138
	4			
9	9			
12	12	-14.460	2.266	109.535
13	13	-8.519	-0.560	71.949
14	14			
	16	-11.167	0.418	104.047
	19			
	22			
28	28	-12.637	-2.762	112.492
29	29	-12.118	-2.994	81.106
32	32	-14.804	-3.780	113.856
	33			
	34			
36	36	-11.868	-1.322	107.010

Non-standard Designs

Compare the D-Optimal and I-Optimal Designs for the Quadratic Model

Optimization

Non-standard Designs

Known Non-Linear Model

Example 3 - Nonlinear model

Figure 10.14 Diagram of Two-Compartment Model for Tetracycline Metabolism

$$\begin{split} y &= \gamma_1(x) = \gamma_0 \left[e^{-k_1(x-t_0)} - e^{-k_2(x-t_0)}\right] \\ f(x, \gamma_0, k_1, k_2, t_0) &= f(x, \gamma_0^*, k_1^*, k_2^*, t_0^*) + (\gamma_0 - \gamma_0^*) \left(\frac{\partial f}{\partial \gamma_0}\right)\Big|_{\gamma_0 \sim \gamma_0^*} \\ &+ (k_1 - k_1^*) \left(\frac{\partial f}{\partial k_1}\right)\Big|_{k_1 + k_1^*} \end{split}$$

$$+(k_1 - k_1)\left(\frac{\partial f}{\partial k_1}\right)\Big|_{k_1 = k_1^s}$$

 $+(k_2 - k_2^s)\left(\frac{\partial f}{\partial k_2}\right)\Big|_{k_2 = k_2^s}$

$$+\left(t_0-t_0^*\right)\left(\frac{\partial f}{\partial t_0}\right)\Big|_{t_0=t_0^*}$$

Design Strategy

For the compartment model in Equation (10.7)

$$\begin{split} \frac{\partial f}{\partial \gamma_0} &= e^{-k_1(x-t_0)} - e^{-k_2(x-t_0)} \\ \frac{\partial f}{\partial k_1} &= -\gamma_0(x-t_0)e^{-k_1(x-t_0)} \\ \frac{\partial f}{\partial k_2} &= -\gamma_0(x-t_0)e^{-k_2(x-t_0)} \\ \frac{\partial f}{\partial k_2} &= -\gamma_0(x-t_0)e^{-k_2(x-t_0)} \\ \frac{\partial f}{\partial xc} &= \gamma_0k_1e^{-k_1(x-t_0)} - \gamma_0k_2e^{-k_2(x-t_0)} \end{split}$$

The strategy is to create a grid of candidates in the independent variable x, calculate the values of each of the four partial derivatives using initial guesses of the parameter values at each candidate point, and then use the optFederov function in the AlgDesign package to select a D-optimal subset of the grid.

John Lawson FTC Short Course - Design and Analysis of Experim

Optimization

Non-standard Designs

Create the Design in R

```
> k1 <- .15; k2 <- .72; gamma0 <- 2.65; t0 <- 0.41
> x <- c(seq(1:25))
> dfdk1 <- c(rep(0, 25))
> dfdk2 <- c(rep(0, 25))
> dfdgamma0 <- c(rep(0, 25))
> dfdt0 <- c(rep(0, 25))
> for (i in 1:25) {
  exp(-k2 * (x[i] - t0)) * k2; ]
> grid <- data.frame(x, dfdk1, dfdk2, dfdgamma0, dfdt0)
> library(AlgDesign)
> desgn2<-optFederov(~-1+dfdk1+dfdk2+dfdgamma0+dfdt0,data=grid,nTrials=4,center=TRUE,
+ criterion="D".nRepeats=201
> desgn2$design
  x dfdk1
                    dfdk2 dfdgamma0
   1 -1.431076 1.022374e+00 0.26140256 -0.883809267
2 2 -3.319432 1.341105e+00 0.46952112 -0.294138728
5 5 -6.110079 4.464802e-01 0.46562245 0.129639675
25 25 -1.629706 1.333237e-06 0.02500947 0.009941233
```

Fitting the Response Surface Model

Central Composite Design-Cement Grout

Table 10.1 Central Commonite Design in Coded and Actual Units for Cement Work

ability	Experis	sent					
run	x1	x2	23	Water/cement	Black Liq.	SNF	.0
1	-1	-1	-1	0.330	0.120	0.080	109.5
2	1	-1	-1	0.350	0.120	0.080	120.0
3	-1	1	-1	0.330	0.180	0.080	110.5
4	1	1	-1	0.350	0.180	0.080	124.5
5	-1	-1	1	0.330	0.120	0.120	117.0
6	1	-1	1	0.350	0.120	0.120	130.0
7	-1	1	1	0.330	0.180	0.120	121.0
8	1	1	1	0.350	0.180	0.120	132.0
9	0	0	0	0.340	0.150	0.100	117.0
10	0	0	0	0.340	0.150	0.100	117.0
11	0	0	0	0.340	0.150	0.100	115.0
12	-1.68	0	0	0.323	0.150	0.100	109.5
1.3	1.68	0	0	0.357	0.150	0.100	132.0
14	0	-1.68	0	0.340	0.100	0.100	120.0
15	0	1.68	0	0.340	0.200	0.100	121.0
16	0	0	-1.68	0.340	0.150	0.006	115.0
17	0	0	1.68	0.340	0.150	0.134	127.0
18	0	0	0	0.340	0.150	0.100	116.0
19	0	0	0	0.340	0.150	0.100	117.0
20	0	0	0	0.340	0.150	0.100	117.0

(actual level - center value)/(half range) $\pm 1.68 = \sqrt[4]{8}$ 4 D >

181 121 121 2 990 John Lawson FTC Short Course - Design and Analysis of Experiments with R

Optimization

Fitting the Response Surface Model

Central Composite Design-Cement Grout

> data(cement)

1 0.3300000 0.12000000 0.08000000 109.5 1 0.350000 0.12000000 0.0800000 117.5 1 0.330000 0.1800000 0.0800000 117.5 1 0.3500000 0.18000000 0.08000000 121.0 1 0.3300000 0.18000000 0.08000000 121.0 1 0.3300000 0.12000000 0.12000000 130.0 1 0.3300000 0.12000000 0.12000000 134.0 1 0.3300000 0.18000000 0.12000000 134.0 C1.6 Factorial plus centerpoints 1 0.3400000 0.15000000 0.10000000 117.0 C1.10

CI.10 1 0.3400000 0.15000000 0.10000000 117.0 C
1.11 1 0.4400000 0.15000000 0.1000000 115.0 C
22.1 2 0.3211821 0.15000000 0.1000000 199.5 C
22.2 2 0.3568179 0.15000000 0.1000000 120.0 C
22.3 2 0.3400000 0.09954622 0.10000000 120.0 C
22.4 2 0.3400000 0.2004378 0.10000000 121.0 C
22.5 2 0.34000000 0.5000000 0.5000000 121.0 C Axial points plus centerpoints 2 0.3400000 0.15000000 0.13363586 127.0 2 0.3400000 0.15000000 0.10000000 116.0 2 0.3400000 0.15000000 0.10000000 117.0 52.7

2 0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas ...

x1 - (NatCem - 0.34)/0.01 x2 - (BlackL - 0.15)/0.03 x3 - (SNF - 0.1)/0.02

Fitting the Response Surface Model

Fit Linear Model-Block 1

```
> library(ram)
> grout.lin <- rsm(y ~ SO(x1, x2, x3),data = cement, subset = (Block == 1))
In rsm(y \sim SO(x1, x2, x3), data = cement, subset = (Block == 1)) :
  Some coefficients are aliased - cannot use 'rem' methods.
  Returning an 'lm' object.
 anova(grout.lin)
Analysis of Variance Table
Response: y
                  Df Sum So Mean So F value
FO(x1, x2, x3) 3 465.13 155.042 80.3094 0.00230" **
TMY(x1, x2, x3) 3 0.25 0.083 0.0432 0.985889
PQ(x1, x2, x3) 1 37.88 37.879 19.6207 0.021377 *
Residuals 3 5.79 1.931
                                                                                                                                 Average
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

John Lawson FTC Short Course - Design and Analysis of Experis

40 × 40 × 42 × 42 × 2 × 99.0

Optimization

Fitting the Response Surface Model

Fit Quadratic Model-All Data

Multiple R-squared: 0.9473.

```
> library(daewr)
> data(cement)
> grout, guad <- rem(v ~ Block + SO(x1.x2.x3), data = cement)
> summary(grout.quad)
rsm(formula = y ~ Block + SO(x1, x2, x3), data = cement)
Estimate Std. Error t value Pr(>|t|) (Intercept) 1.1628e+02 1.0691e+00 108.7658 2.383e-15 ***
Block2
            4.4393e-01 1.0203e+00 0.4351
xl
             5.4068e+00 6.1057e-01
                                          8.8553 9.746e-06 ***
                                         1.5209 0.16262
8.1767 1.858e-05 ***
             9.2860e-01 6.1057e-01
x3
             4.9925e+00 6.1057e-01
            1.2500e-01 7.9775e-01
-1.3443e-14 7.9775e-01
                                          0.1567 0.87895
x1:x3
                                          0.0000
                                                    1.00000
x2:x3
            1.2500e-01 7.9775e-01
                                         0.1567
                                                   0.87895
             1.4135e+00 5.9582e-01
x2^2
             1.3251e+00 5.9582e-01 2.2240
1.5019e+00 5.9582e-01 2.5207
                                                   0.05322 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

F-statistic: 16.17 on 10 and 9 DF, p-value: 0.0001414

Adjusted R-squared: 0.8887

stroduction The Quadratic Response Surface Model Jesign Criteria

lon-standard Designs

Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs

Fit Quadratic Model-All Data

Analysis of Variance Table

Response: y

	Dž	Sum Sq	Mean Sq	F value	Pr(>F)
Block	1	0.00	0.003	0.0006	0.98068
FO(x1, x2, x3)	3	751.41	250.471	49.1962	6.607e-06
TWI(x1, x2, x3)	3	0.25	0.083	0.0164	0.99693
PQ(x1, x2, x3)	3	71.45	23.817	4.6779	0.03106
Residuals	9	45.82	5.091		
Lack of fit	5	42.49	8.498	10.1972	0.02149
Pure error	4	3.33	0.833		

40 + 40 + 42 + 42 + 2 990

John Laws

Optimization

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Models

Non-standard Designs
Fitting the Response Surface Model
Determining Optimum Conditions
Split-Plot Response Surface Designs

Contour Plots of Fitted Surface

> library(rsm)

> contour(grout.quad, ~ x1+x2+x3)

ntroduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Model

Standard Designs for Section Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Splits Plot Response Surface Designs

Perspective Plots of Fitted Surface

- > par(mfrow=c(1,3))
- > persp(grout.quad, x1+x2+x3, zlab="Work", contours=list(z="bottom"))

101101101101010

Jahre I aug

FTC Short Course - Design and Analysis of Experiments with

Optimization

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Moc
Non-standard Designs
Fitting the Response Surface Model
Determining Optimum Conditions
Soliti-Plat Remonse Surface Designs
Soliti-Plat Remonse Surface Designs

Cannonical Analysis

10.7.2 Canonical Analysis

$$y = xb + x'Bx + \epsilon$$
 where $x' = (1, x_1, x_2, \dots, x_k)$, $b' = (\beta_0, \beta_1, \dots, \beta_k)$

Stationary point $x_0 = -\hat{\mathbf{B}}^{-1}\hat{\mathbf{b}}/2$

Maximum? Minimum? or Saddlepoint?

Figure 10.18 Representation of Canonical System with Translated Origin and Rotated Axis

Cannonical Analysis

```
Stationary point of response surface:
      x1 x2 x3
-1.9045158 -0.1825251 -1.6544845
Stationary point in original units:
   WatCem BlackL
0.32095484 0.14452425 0.06691031
Eigenanalysis:
$values
[1] 1.525478 1.436349 1.278634
$vectors
      [,1] [,2]
x1 0.1934409 0.8924556 0.4075580
x2 0.3466186  0.3264506 -0.8793666
x3 0.9178432 -0.3113726 0.2461928
```

4 D 3 4 D 3

Optimization

Ridge Analysis

10.7.3 Ridge Analysis maximum or minimum of
$$\mathbf{y} = \mathbf{x}\mathbf{b} + \mathbf{x}'\mathbf{B}\mathbf{x}$$

subject to
$$\mathbf{x}'\mathbf{x} = R^2$$

The solution is obtained in a reverse order using Lagrange multipliers. The resulting optimal coordinates are found to be the solution to the equation

$$(B - \mu I_k)x = -b/2.$$
 (10.12)

Ridge Analysis

Figure 10.19 Path of Maximum Ridge Response Through Experimental Region

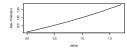
4 D 3 4 D 3

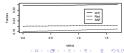
Optimization

Calculations with rsm package

> ridge<-steepest(grout.quad, dist=seq(0, 1.7, by=.1),descent=FALSE) Path of steepest ascent from ridge analysis:

- >	ridge										
	dist	x1	x2	x3	П	WatCem	BlackL	SNF	1	yhat	
1	0.0	0.000	0.000	0.000	П	0.34000	0.15000	0.10000	1	116.280	
2	0.1	0.073	0.013	0.067	П	0.34073	0.15039	0.10134	1	117.036	
3	0.2	0.145	0.026	0.135	П	0.34145	0.15078	0.10270	1	117.821	
4	0.3	0.218	0.039	0.203	П	0.34218	0.15117	0.10406	1	118.641	
5	0.4	0.290	0.053	0.270	П	0.34290	0.15159	0.10540	1	119.481	
6	0.5	0.362	0.067	0.338	П	0.34362	0.15201	0.10676	1	120.355	
7	0.6	0.434	0.082	0.406	П	0.34434	0.15246	0.10812	1	121.261	
8	0.7	0.505	0.096	0.475	П	0.34505	0.15288	0.10950	1	122.194	
9	0.8	0.577	0.112	0.543	П	0.34577	0.15336	0.11086	1	123.160	
1	0.9	0.648	0.127	0.611	П	0.34648	0.15381	0.11222	1	124.147	
1	1 1.0	0.719	0.143	0.680	П	0.34719	0.15429	0.11360	1	125.172	
1	2 1.1	0.790	0.159	0.749	П	0.34790	0.15477	0.11498	1	126.227	
1	3 1.2	0.861	0.176	0.818	П	0.34861	0.15528	0.11636	1	127.313	
1	4 1.3	0.931	0.192	0.887	П	0.34931	0.15576	0.11774	1	128.419	
1	5 1.4	1.001	0.209	0.956	П	0.35001	0.15627	0.11912	1	129.557	
1	6 1.5	1.071	0.227	1.025	П	0.35071	0.15681	0.12050	1	130.725	
1	7 1.6	1.141	0.244	1.095	П	0.35141	0.15732	0.12190	1	131.930	
1	8 1.7	1.211	0.262	1.164	1	0.35211	0.15786	0.12328	1	133.158	


ntroduction The Quadratic Response Surface Model

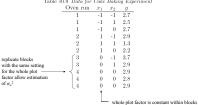

andard Designs for Second Order Model:

Pitting the Response Surface Model
Determining Optimum Conditions
Split-Plat Response Surface Designs

Plotting the Ridge Trace with R

- > par (mfrow=c(2,1))
- > leg.txt<-c("W/C","Rad","SNF")
- > plot(ridge\$dist,ridge\$yhat, type="1",xlab="radius",ylab="Max. Predicted")
- > plot(ridge\$dist,seq(.10,.355,by=.015), type="n", xlab="radius", ylab="Factors")
- > lines(ridge\$dist,ridge\$WatCem,lty=1)
 > lines(ridge\$dist,ridge\$BlackL,lty=2)
- > lines(ridge\$dist,ridge\$SNF,lty=3)
- > legend(1.1,.31,leg.txt,lty=c(1,2,3))

John I we


FTC Short Course - Design and Analysis of Experiments with

Optimization

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Mon
Non-standard Designs
Fitting the Response Surface Model
Determining Outinum Conditions

Split-Plot Response Surface Designs

Table 10.9 Data for Cake Baking Experiment

101100 2 121121 10111

Split-Plot Response Surface Designs

Fitting the Model with Ime4 package

```
> library(lme4)
Loading required package: Matrix
Loading required package: Rcpp
> library(daewr)
from 'package: lme4':
  cake
> data(cake)
> cake
 Ovenrun x1 x2 y x1sq x2sq
     1 -1 -1 2.7 1 1
      3 0 1 2.9
      4 0 0 2.9 0
    4 0 0 2.8
11
```

> mmod <- lmer(y - x1 +x2 +x1:x2 +x1sq + x2sq +(1|Ovenrun), data=cake) 40 × 40 × 42 × 42 × 2 × 99.0

Optimization

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Differences in REML and Least Squares Estimates

Table 10.10 Comparison of Least Squares and REML Estimates for Split-Plot Response Surface Experiment

		Least Sq	uares (rsn	n function)	REMI	(lmer	function)
	Factor	β	$s_{\hat{\beta}}$	P-value	$\hat{\beta}$	$s_{\hat{\beta}}$	P-value
	intercept	2.979	0.1000	<.001	3.1312	0.2667	0.054
Subplo	t x1	-0.2500	0.0795	0.026	-0.2500	0.2656	0.399
factor	$-x_2$	-0.4333	0.0795	0.003	-0.4333	0.0204	<.001
	x_1^2	-0.6974	0.1223	0.002	-0.6835	0.3758	0.143
	x_{2}^{2}	0.1526	0.1223	0.016	-0.0965	0.0432	0.089
	x_1x_2	-0.3500	0.0973	0.268	-0.3500	0.0250	< .001
-					$\hat{\sigma}_{}^{2} = 0.1$	$1402, \hat{\sigma}^2$	= 0.0025

Estimation Equivalent Split-Plot RS Design (EESPRS)

Least Squares (rsm function) REMI (lmer function) $\hat{\beta}$ $s_{\hat{\alpha}}$ P-value $\hat{\beta}$ $s_{\hat{\alpha}}$ P-value

 $\frac{\beta}{2.979}$ $\frac{s_{\beta}}{0.1000}$ $\frac{P-\text{value}}{0.001}$ $\frac{s_{\beta}}{3.1312}$ $\frac{P-\text{value}}{0.2667}$ $\frac{0.054}{0.0399}$ -0.2500 $\frac{0.0795}{0.093}$ $\frac{0.026}{0.0399}$ $\frac{-0.2500}{0.0339}$ $\frac{0.0399}{0.0333}$ $\frac{0.0204}{0.001}$ intercept x_1 x_2 -0.6974 0.1223 0.002 -0.6835 0.3758 0.143 $\hat{\sigma}_{\omega}^2 = 0.1402, \ \hat{\sigma}^2 = 0.0025$

 $\begin{aligned} \mathbf{y} &= \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} & \mathbf{y} &= \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\omega} + \boldsymbol{\epsilon} \\ \hat{\boldsymbol{\rho}}_{\text{LS}} &= & (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} & \hat{\boldsymbol{\rho}}_{\text{REML}} &= & (\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{y} \end{aligned}$

EESPRS $\hat{\beta}_{LS} = \hat{\beta}_{REML}$ if $(\mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{J}\mathbf{X}) = \mathbf{0}_{n \times p}$

40 × 40 × 42 × 42 × 2 × 99.0

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Optimization

Jones and Goos(2012) D-efficient (EESPRS)

Table 10.15 daewr Functions for Recalling Jones and Goos's D-Efficient EESPRS Designs

Function Name	Number of Whole-Plot Factors	Number of Split-Plot Factors
EEw1s1	1	1
EEw1s2	1	2
EEw1s3	1	3
EEw2s1	2	1
EEw2s2	2	2
EEw2s3	2	2
EEw3	3	2 or 3

Creating a Design with daewr package

> library(daewr) > EEw2e3() Catalog of D-efficient Estimation Equivalent RS Designs for (2 wp factors and 3 sp factors)

Jones and Goos, JQT(2012) pp. 363-374 Design Name whole plots sub-plots/whole

PP2197Wh RE24BRWD EE32R8WP EE35R7WP EE40R8WP

RE42B7WD EE48R8WP EE2w3s('EE21R7MP') etc.

> EEw2e3('EE21R7WP') WP w1 w2 s1 s2 s3 7 3 -1 0 -1 1 0 8 3 -1 0 1 -1 -1

20

4 D 3 4 D 3

John Lawson FTC Short Course - Design and Analysis of Experis

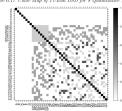
Optimization

One-Step Screening to Optimization

- Definitive Screening Design
- Jones and Nachtsheim(2011, 2013)
- 3-level designs
- 2k+1 runs for k factors

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Mode
Non-standard Designs
Fitting the Response Surface Model
Determining Outinum Conditions

Creating a Definitive Screening Design with daewr


JOHN EUWJOI

Optimization

introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Mod
Non-standard Designs
Fitting the Response Surface Model
Determining Optimum Conditions
Split-Plot Response Surface Model

Definitive Screening Designs Are Model Robust

Figure 6.17 Color Map of 17-Run DSD for 8 Quantitative Factors

Example of a Definitive Screening Design

Table 13.2 Factors in the Definitive Screening Experiments of TiO₂ Synthesis

Label	Factor
A	Speed of H ₂ O addition
В	Amount of H ₂ O
C	Drying Time
D	Drying Temperature
E	Calcination Ramp
F	Calcination Temperature

Calcination Time Н Dopant Amount

G

John Lawson FTC Short Course - Design and Analysis of Experiments with

Optimization

Analysis using ihstep, fstep in daewr package

```
> pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,
> trm<-ihstep(pd,des)
lm(formula = y \sim (.), data = d1)
Residuals:
Min 1Q Median 3Q Max
-5.0201 -0.8301 0.0814 1.0299 3.6799
| Estimate Std. Error t value Pr(>|t|) | (Intercept) | 7.2194 | 0.5140 | 14.045 | 4.89e-10 | *** | F | 3.1508 | 0.5664 | 5.563 | 5.43e-05 | *** |
F
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.119 on 15 degrees of freedom
Multiple R-squared: 0.6735, Adjusted R-squared: 0.6518
```

F-statistic: 30.94 on 1 and 15 DF, p-value: 5.429e-05

Analysis using ihstep, fstep in daewr package

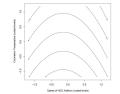
```
> trm<- fhstep(pd, des, trm)
Call:
lm(formula = y \sim (.), data = d2)
          10 Median
   Min
                        30
-2.8341 -1.0214 -0.2049 0.5194 2.8378
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.792 on 13 degrees of freedom
Multiple R-squared: 0.7977, Adjusted R-squared: 0.751
F-statistic: 17.09 on 3 and 13 DF, p-value: 8.501e-05
```

John Lawson FTC Short Course - Design and Analysis of Experiments with

4 D 3 4 D 3

Optimization

Analysis using ihstep, fstep in daewr package


```
> trm <-fhstep(pd, des, trm)
lm(formula = v \sim ( ) data = d2)
Min 1Q Median 3Q Max
-2.8480 -0.6376 0.3167 0.6709 2.4451
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0333 0.9280 5.424 0.00154 ***
F 3.1508 0.4296 7.335 9.04e-06 ***
I.A.2. 2.5545 1.0226 2.596 0.02407 5.
C -0.8758 0.4296 -1.209 0.06437 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.607 on 12 degrees of freedom
Multiple R-squared: 0.8498, Adjusted R-squared: 0.7997
F-statistic: 16.97 on 4 and 12 DF, p-value: 7.013e-05
```


Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Model
Non-standard Designs
Fitting the Response Surface Model
Determining Optimum Conditions
Solis Diet Persponse Surface Designs

Final Results

Pore Diameter = $5.0333 + 0.7664x_1 - 0.8758x_2 + 3.1508x_3 + 2.6545x_1^2$ Figure 13.5 Contour Plot of Pore Diameter with Drying Time Fixed at Mid-Level

- (B) (B) (E) (E) E 99(

John Lawso

Optimization

The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Mode Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Solit-Plot Response Surface Designs

Recommendations for DSD (Jones)

- Add two dummy factors to create a design with 2k+4 runs for k factors
- · Add replicate center points
- Analyze by first fitting the model that includes linear and quadratic main effects only (this leaves at least 4 df for error)
- Eliminate insignificant terms and fit the full quadratic model to the remaining terms