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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

A Short Description of R

R is the language of choice for a large and growing proportion
of people developing new statistical algorithms

R is available under GNU General Public License for Windows,
Mac OS X, and Linux

R is extendable with user submitted packages

The Comprehensive R Archive Network (CRAN) makes it easy
to benefit from others work, and share your own work and get
feedback for improvements

There are many user written packages available for the Design
and Analysis of Experiments
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Websites for Help Getting Started with R

The R Project for Statistical Computing

https://www.r-project.org

Getting Started with R

http://data.princeton.edu/R/

A Short Tutorial

http://math.usask.ca/~longhai/doc/others/R-tutorial.pdf

An Introductory pdf Manual can be Obtained Here

https://cran.r-project.org/doc/manuals/R-intro.pdf
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Websites for Help Getting Started with R

Installing and using R packages

http://math.usask.ca/~longhai/software/installrpkg.html

R Packages for Design an Analysis of Experiments

https://cran.r-project.org/web/views/

ExperimentalDesign.html
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Preliminaries
Program Interface
R packages
Code and Data from The Book

Objects in R

During an R session R Creates Entities known as Objects

Variables

Arrays of numbers

Character strings

Functions

Data frames and other more complex elements built from
earlier components
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Preliminaries
Program Interface
R packages
Code and Data from The Book

The R Console

Command line
prompt >

Type commands
and see text results
immediately
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Command line Examples

Expressions and
Assignments

Do calculations or
make assignments
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Preliminaries
Program Interface
R packages
Code and Data from The Book

The R Script
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Program Interface
R packages
Code and Data from The Book

Running Commands from an RScript
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Making a Plot in R
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Preliminaries
Program Interface
R packages
Code and Data from The Book

Installing an R Package
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Loading an R Package
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Documentation for an R Package

Package Documents

Document functions
and data frames
available in the
package
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Documentation for a Function

Function Document

fact.design function
in DoE.Base
Package
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Example Code in Function Documentation

Function Examples

Examples of
fact.design function
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Running a function in a loaded package (DoE.Base)
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

User written R packages illustrated in the book

AlgDesign, agricolae

BsMD

car crossdes

daewr, DoE.base

effects

FrF2

GAD, gdata, gmodels

leaps, lme4

mixexp, multcomp

nlme

rsm
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Website for the book

https://jlawson.byu.edu

By going to the website below and clicking on the cover of Basic Experimental Strategies and Data
Analysis for Science and Engineering, you will link you to the page where you can download spreadsheets
containing the tables described on page 56.
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

Code examples in the book

Code and Data

Code: Web page
Data: daewr
package
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R Basics

Preliminaries
Program Interface
R packages
Code and Data from The Book

R Code for Chapter 2

R Examples for Chapter 2
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A Context for Discussing Experimental
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Strategy

Outline of Part II

2 A Context for Discussing Experimental Designs
Introduction
Preliminary Exploration
Screening Factors
Effect Estimation
Optimization
Sequential Experimentation
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Introduction
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Screening Factors
Effect Estimation
Optimization
Sequential Experimentation

Strategy for Experimentation

A‐Correct:  The most important characteristic of the experimental environment is the number of factors
under study. When there are only three to six factors, a factorial design consisting of all 
combinations of the levels of the factors can usually be used to estimate all the factor effects and  
interactions. However, when there are seven factors under study, it would require at least 128 
experiments in a factorial design with only two levels for each factor. With six, seven or more   
factors, the objective of experimentation is usually changed from estimating all effects and
interactions to just determining which factors are important. This is because experience has 
shown that when a long list of factors is studied, only a subset of them will have effects large  
enough to be seen above the level of experimental error. 

R.D. Snee ”Raise Your Batting Average” Quality Progress Dec.
2009
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Strategy

Introduction
Preliminary Exploration
Screening Factors
Effect Estimation
Optimization
Sequential Experimentation

Preliminary Exploration

Exploratory experiments to study repeatability of the process

Identify process steps causing majority of the variability in
results

Identify factors that possibly affect the results
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Strategy

Introduction
Preliminary Exploration
Screening Factors
Effect Estimation
Optimization
Sequential Experimentation

Screening

Explores a large number of factors

Objective is to identify smaller subset of most important
factors

Fit linear models to the data
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Strategy

Introduction
Preliminary Exploration
Screening Factors
Effect Estimation
Optimization
Sequential Experimentation

Effect Estimation

Explores the relationship between results and important
factors

Goal is to estimate linear effects and interactions and develop
a prediction model

Fit models including linear effects and interactions
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Strategy

Introduction
Preliminary Exploration
Screening Factors
Effect Estimation
Optimization
Sequential Experimentation

Optimization

Explores the relationship between results and a limited
number of quantitative leveled factors

Goal is to identify optimum operating conditions within the
factor ranges studied

Fit quadratic response surface models
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Strategy

Introduction
Preliminary Exploration
Screening Factors
Effect Estimation
Optimization
Sequential Experimentation

Sequential Experimentation

Plan Ahead – decide on a series of experiments that may be
needed

Consider All Possible Factors – majority of variation is caused
by a subset of factors, but which ones?

Don’t Spend All Resources on a Single Experiment
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Strategy

Introduction
Preliminary Exploration
Screening Factors
Effect Estimation
Optimization
Sequential Experimentation

Possible Sequences

Preliminary Exploration – Effect Estimation

Preliminary Exploration – Optimization

Screening – Effect Estimation – Optimization
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Design and Analysis of Two-Level Factorials

Part III

Design and Analysis of Two-Level

Factorials
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Design and Analysis of Two-Level Factorials

Outline of Part III

3 Design and Analysis of Two-Level Factorials
Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs
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Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Why start discussion with two-level factorials?

A‐Correct:  The most important characteristic of the experimental environment is the number of factors
under study. When there are only three to six factors, a factorial design consisting of all 
combinations of the levels of the factors can usually be used to estimate all the factor effects and  
interactions. However, when there are seven factors under study, it would require at least 128 
experiments in a factorial design with only two levels for each factor. With six, seven or more   
factors, the objective of experimentation is usually changed from estimating all effects and
interactions to just determining which factors are important. This is because experience has 
shown that when a long list of factors is studied, only a subset of them will have effects large  
enough to be seen above the level of experimental error. 
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Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Why start discussion with two-level factorials?
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Why start discussion with two-level factorials?

‐
‐
‐

0 ‐ 0

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐
x

‐
‐
‐
x

‐
‐
‐
x

‐
‐
‐
x

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

0 0 

‐
‐
‐

 0 0

‐
‐
‐

‐ 0 0

‐
‐
‐

0 0 ‐

‐
‐
‐

0  0

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

‐
‐
‐

  

A

B

C

AA

BB

CC

Two‐Level Factorial

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Effect estimation in two-level factorials

TWO-LEVEL FACTORIALS 87

Figure 3.9 Effect and Regression Coefficient for Two-Level Factorial

- +
Factor A

EA

- +
Factor A

βA

y-···

y+···

y-···

y+···

− and + signs, the second column changing in pairs of − and + signs, and the
third column changing slowest in groups of four − and + signs. The treatment
combinations in two-level factorial designs have traditionally been written in
standard order to facilitate the computation of main effects and interaction
effects by hand using Yates’ algorithm (see Daniel (1976)). The main effect
for factor A can be visualized in the figure as the difference of the average of
the responses on the right side of the cube in the grey-shaded circles and the
average of the responses on the left side of the cube in the white circles. With
modern computer programs such as the R lm function one half of the main
effects, or regression coefficients (shown on the right side of Figure 3.9), can
be computed by regression and we no longer need Yates’ algorithm.

Figure 3.10 Geometric Representation of 23 Design and Main Effect Calculation

Run  XA XB XC Response
1    - - - y---
2   +     - - y+--
3    - +    - y-+-
4   +     +    - y++-
5    - - +      y--+
6   +     - +      y+-+
7    - +     +      y-++
8   +    +     +      y+++ y+--

y-++

y-+-

y+++

y++-

y--+ y+-+

Factor A

Fa
ct

or
 B

Fact
or C

y---

EA = (y+--+ y++-+ y+-++y+++)/4 – (y ---+ y-+-+ y--++ y-++)/4
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Relation between effect and regression coefficient

Coded Factor Levels
for factors with
quantitative levels

(factor setting – mid setting)
(high setting – low setting)/2

=AX
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Definition of interaction effect

88 FACTORIAL DESIGNS

One of the desirable properties of a 2k factorial plan is that factor effects are
not obscured by planned changes in other factors. In the list of experiments for
2k design, shown in Figure 3.10, this is evident by the fact that at the high level
of each factor, there are an equal number of high and low levels of every other
factor. Also at the low level of each factor, there are an equal number of high
and low levels of every other factor. Thus the effect of a factor, or difference
in average response between the high and low level of that factor, represents
the effect of that factor alone, because the influence of all other factors has
been averaged out. Mathematically this property is called orthogonality.

3.7.2 Interactions

When all the factors have only two levels, the AB interaction effect is defined
as one-half the difference in the simple effect of factor A, (y++⋅⋅ − y−+⋅⋅), when
factor B is held constant at its high (+) level, and the simple effect of factor
A, (y+−⋅⋅ − y−−⋅⋅), when factor B is held constant at its low (−) level, that is,((y++⋅⋅ − y−+⋅⋅) − (y+−⋅⋅ − y−−⋅⋅)) /2. This is illustrated on the left side of Figure
3.11. The interaction effect could also be defined as one half the difference in
the simple effect of factor B, (y++⋅⋅−y+−⋅⋅), when factor A is held constant at its
high (+) level, and the simple effect of factor B, (y−+⋅⋅−y−−⋅⋅), when factor A is
held constant at its low (−) level. This is illustrated on the right side of Figure
3.11. Either way the interaction effect is EAB = (y++⋅⋅+y−−⋅⋅)/2−(y+−⋅⋅+y−+⋅⋅)/2
is the difference of two averages.

Figure 3.11 Definition of an Interaction Effect for Two-Level Factorial

y++··

y--··

y-+·· y+ -··
y-+··

y++··

y--··

y+ -··

- +                    - +
Factor A Factor B

B= -

B= +

A= -

A= +

It is easy to determine which responses should be averaged and which average
should be subtracted from the other in order to calculate an interaction effect
as illustrated in Figure 3.12. To calculate the AB interaction, we add a column
of signs, XA ⋅XB to the list of treatment combinations on the left side of the
figure. The elements in this new column are just the elementwise products
of signs in the column for XA and XB (i.e., (−)(−) = +, (−)(+) = − etc.).
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Calculation of interaction effect

TWO-LEVEL FACTORIALS 89

Now the interaction effect can be visualized in the figure as the difference
in the average response on one diagonal represented by grey circles and the
average response on the other diagonal represented by white circles. From this

Figure 3.12 Geometric Representation of 23 Design and Interaction Effect

4/)(    4/)(   yyyyyyyyEAB

representation, it can also be seen that interaction effects are not obscured by
planned changes in other factors, or in other words they are orthogonal to
main effects.

One-half of this interaction effect (or the regression coefficient) can be cal-
culated using a regression program such as the R lm function by adding a
XA ×XB term to the model. Higher order interaction effects can be similarly
defined. Therefore, a simpler way of writing the model for a two-level factorial
is by using the familiar regression equation,

y = β0 + βAXA + βBXB + βABXAXB + βCXC + βACXAXC + βBCXBXC+ βABCXAXBXC + ε
(3.11)

where the βs are one-half of the effects and XA = −1 if factor A is at its
low level and XA = +1 if factor A is at its high level. If we write this model
in matrix terms, y = Xβ + ε, the orthogonality property of the design is
expressed by the fact that the columns of theX matrix are orthogonal and the
X ′X matrix is diagonal with diagonal elements r2k, where r is the number
of replicates of each cell.

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Design and Analysis of Two-Level Factorials

Two-Level Factorials
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Restrictions on Randomization - Split-Plot Designs

Number of experiments

Number of Experiments Required for a Full-Factorial
Number of Levels

Number of Factors 2 3 4

2 4 9 16

3 8 27 64

4 16 81 256

5 32 243 1024
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Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Choice of Levels

Factors with Qualitative Levels

Factors with Quantitative Levels

A‐Correct:  When the two levels are chosen as far apart as reasonable,  experience has shown any real
effect will usually be detected. 
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Even if the true effect is curvilinear, the linear approximation 
from a wide factor range will typically detect some relationship. Then, a few additional  
experiments at the center points on the important factors will then alert the experimenter to 
the difference between a mostly linear effect like (a) and a mostly quadratic effect like (b). 

(a)                                                              (b)
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Only in unusual cases (for unlucky experimenters) would a situation like (c) mask the presence 
of an effect entirely when the extreme ends of the factor range are chosen as levels. 

(c)
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Creating a two-level factorial design with R FrF2

Problem 9 Chapter 3 of ”Design and Analysis with R”

EXERCISES 111

(b) Create a list of experiments in random order for performing these ex-
periments.

(c) Actually perform the experiments by boiling the water and collect the
data.

(d) Analyze the data to determine which effects and interactions are signif-
icant.

(e) Interpret and explain any significant effects you find.

8. Consider the data in Table 3.7 with the third observation (90) replaced by
an atypical value (78) for those factor settings.

(a) Calculate the effects for this data.

(b) Make a normal or half-normal plot of the effects.

(c) What effects do you judge to be significant?

(d) Run the Gaptest function for detecting and correcting an outlier with
this data.

9. Nyberg (1999) has shown that silicon nitride (SiNx) grown by Plasma En-
hanced Chemical Vapor Deposition (PECVD) is a promising candidate for
an antireflection coating (ARC) on commercial crystalline silicon solar cells.
Silicon nitride was grown on polished (100)-oriented 4A silicon wafers using
a parallel plate Plasma Technology PECVD reactor. The diameter of the
electrodes of the PECVD is 24 cm and the diameter of the shower head
(through which the gases enter) is 2A. The RF frequency was 13.56 MHz.
The thickness of the silicon nitride was one-quarter of the wavelength of
light in the nitride, the wavelength being 640 nm. This wavelength is ex-
pected to be close to optimal for silicon solar cell purposes. The process
gases were ammonia and a mixture of 3% silane in argon. The experiments
were carried out according to a 25 factorial design. The results are shown
in the table on the next page.

(a) Fit the factorial model to the response y1 including all interactions up
to the 5-way.

(b) Make a normal plot of the effects or regression coefficients to determine
which main effects and interactions are significant.

(c) Drop insignificant terms from the model and make residual plots to check
the assumptions of the model fit.

(d) Use your model to determine the conditions (i.e., factor levels that will
minimize the refractive index).
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112 FACTORIAL DESIGNS

A B C D E y1 y2

Silane Total
to Gas

Ammonia Flow Growth
Exp. Flow Rate Rate Press. Temp. Power Refract. Rate
No. Ratio (sccm) (mtorr) (C○) (W) Index (nm/min)

1 0.1 40 300 300 10 1.92 1.79
2 0.9 40 300 300 10 3.06 10.1
3 0.1 220 300 300 10 1.96 3.02
4 0.9 220 300 300 10 3.33 15
5 0.1 40 1200 300 10 1.87 19.7
6 0.9 40 1200 300 10 2.62 11.2
7 0.1 220 1200 300 10 1.97 35.7
8 0.9 220 1200 300 10 2.96 36.2
9 0.1 40 300 460 10 1.94 2.31

10 0.9 40 300 460 10 3.53 5.58
11 0.1 220 300 460 10 2.06 2.75
12 0.9 220 300 460 10 3.75 14.5
13 0.1 40 1200 460 10 1.96 20.7
14 0.9 40 1200 460 10 3.14 11.7
15 0.1 220 1200 460 10 2.15 31
16 0.9 220 1200 460 10 3.43 39
17 0.1 40 300 300 60 1.95 3.93
18 0.9 40 300 300 60 3.16 12.4
19 0.1 220 300 300 60 2.01 6.33
20 0.9 220 300 300 60 3.43 23.7
21 0.1 40 1200 300 60 1.88 35.3
22 0.9 40 1200 300 60 2.14 15.1
23 0.1 220 1200 300 60 1.98 57.1
24 0.9 220 1200 300 60 2.81 45.9
25 0.1 40 300 460 60 1.97 5.27
26 0.9 40 300 460 60 3.67 12.3
27 0.1 220 300 460 60 2.09 6.39
28 0.9 220 300 460 60 3.73 30.5
29 0.1 40 1200 460 60 1.98 30.1
30 0.9 40 1200 460 60 2.99 14.5
31 0.1 220 1200 460 60 2.19 50.3
32 0.9 220 1200 460 60 3.39 47.1
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> library(FrF2)
> Design.p9 <-FrF2(nruns=32, nfactors=5, blocks=1, ncenter=0, replications=1, 
+ randomize=FALSE, factor.names=list(Ratio=c(0.1,0.9),Gas_flow=c(40,60),
+ Pressure=c(300,1200),Temperature=c(300,460), Power=c(10,60)))
creating full factorial with 32 runs ...

> y1<-c(1.92,3.06,1.96,3.33,1.87,2.62,1.97,2.96,1.94,3.53,2.06,3.75,1.96,3.14,2.15,
+ 3.43,1.95,3.16,2.01,3.43,1.88,2.14,1.98,2.81,1.97,3.67,2.09,3.73,1.98,2.99,2.19,
+ 3.39)
> y2<-c(1.79,10.10,3.02,15.00,19.70,11.20,35.70,36.20,2.31,5.58,2.75,14.50,20.70,
+ 11.70,31.00,39.00,3.93,12.40,6.33,23.70,35.30,15.10,57.10,45.90,5.27,12.30,6.39,
+ 30.50,30.10,14.50,50.30,47.10)
> Design.p9 <- add.response(Design.p9, y1, replace=FALSE)
> Design.p9 <- add.response(Design.p9, y2, replace=FALSE)
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> print( Design.p9, std.order=TRUE)
run.no.in.std.order run.no Ratio Gas_flow Pressure Temperature Power   y1    y2

1                    1      1   0.1       40      300         300    10 1.92  1.79
2                    2      2   0.9       40      300         300    10 3.06 10.10
3                    3      3   0.1       60      300         300    10 1.96  3.02
4                    4      4   0.9       60      300         300    10 3.33 15.00
5                    5      5   0.1       40     1200         300    10 1.87 19.70
6                    6      6   0.9       40     1200         300    10 2.62 11.20
7                    7      7   0.1       60     1200         300    10 1.97 35.70
8                    8      8   0.9       60     1200         300    10 2.96 36.20
9                    9      9   0.1       40      300         460    10 1.94  2.31
10                  10     10   0.9       40      300         460    10 3.53  5.58
11                  11     11   0.1       60      300         460    10 2.06  2.75
12                  12     12   0.9       60      300         460    10 3.75 14.50
13                  13     13   0.1       40     1200         460    10 1.96 20.70
14                  14     14   0.9       40     1200         460    10 3.14 11.70
15                  15     15   0.1       60     1200         460    10 2.15 31.00
16                  16     16   0.9       60     1200         460    10 3.43 39.00
17                  17     17   0.1       40      300         300    60 1.95  3.93
18                  18     18   0.9       40      300         300    60 3.16 12.40
19                  19     19   0.1       60      300         300    60 2.01  6.33
20                  20     20   0.9       60      300         300    60 3.43 23.70
21                  21     21   0.1       40     1200         300    60 1.88 35.30
22                  22     22   0.9       40     1200         300    60 2.14 15.10

...
30                  30     30   0.9       40     1200         460    60 2.99 14.50
31                  31     31   0.1       60     1200         460    60 2.19 50.30
32                  32     32   0.9       60     1200         460    60 3.39 47.10
NOTE: columns run.no.in.std.order and run.no are annotation, not part of the data frame
> 
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Levels

Factor − +

A=Ambient temperature, ◦C 22 32
B=Voltmeter warmup time, minutes 0.5 5.0
C=Time power is connected, minutes 0.5 5.0
Y=measured voltage, millivolts
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90 FACTORIAL DESIGNS

3.7.3 Example of a 23 Factorial

To illustrate the design and analysis of a 23 factorial experiment, consider the
following example (see Lawson and Erjavec, 2001). Students in a university
electronics lab often complained that voltage measurements made on a circuit
they constructed in class were inconsistent. The lab teaching assistant (TA)
decided to conduct an experiment to try to identify the source of the variation.
The three factors he varied were A=the ambient temperature where the volt-
age measurement was made, B=the voltmeter warm-up time, and C=the time
the power was connected to the circuit before the measurement was taken. The
response was the measured voltage in millivolts. The two levels for factor A
were − = 22○C (room temperature) and + = 32○C (close to the temperature
in some industrial settings). An oven was used and the circuit was allowed to
stabilize for at least five minutes prior to measurements. The settings for fac-
tors B and C were − =30 seconds or less, and + =5 minutes. The same circuit
was measured for each combination of treatment factors so the experimental
unit was nothing more than the trial or point in time at which the particular
combination of treatment factor levels were applied to make the measurement.
Two replicates of each of the eight experimental combinations were run in a
random order to help prevent biases. The results of the experiment are shown
in Table 3.6.

Table 3.6 Factor Settings and Response for Voltmeter Experiment
Factor Levels Coded Factors

Run A B C XA XB XC Rep Order y
1 22 0.5 0.5 − − − 1 5 705
2 32 0.5 0.5 + − − 1 14 620
3 22 5.0 0.5 − + − 1 15 700
4 32 5.0 0.5 + + − 1 1 629
5 22 0.5 5.0 − − + 1 8 672
6 32 0.5 5.0 + − + 1 12 668
7 22 5.0 5.0 − + + 1 10 715
8 32 5.0 5.0 + + + 1 9 647
1 22 0.5 0.5 − − − 1 4 680
2 32 0.5 0.5 + − − 1 7 651
3 22 5.0 0.5 − + − 1 2 685
4 32 5.0 0.5 + + − 1 3 635
5 22 0.5 5.0 − − + 1 11 654
6 32 0.5 5.0 + − + 1 16 691
7 22 5.0 5.0 − + + 1 6 672
8 32 5.0 5.0 + + + 1 13 673

In this table, the actual factor settings are shown on the left, and the coded− and + levels are shown on the right. The actual settings on the left form a list
of recipes or directions for performing each experiment. The order number on
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Note

volt is a data frame
in daewr package

> library(daewr)
Warning message:
package ‘daewr’ was built under R version 
3.2.2 
> volt

A   B   C   y
1  22 0.5 0.5 705
2  32 0.5 0.5 620
3  22   5 0.5 700
4  32   5 0.5 629
5  22 0.5   5 672
6  32 0.5   5 668
7  22   5   5 715
8  32   5   5 647
9  22 0.5 0.5 680
10 32 0.5 0.5 651
11 22   5 0.5 685
12 32   5 0.5 635
13 22 0.5   5 654
14 32 0.5   5 691
15 22   5   5 672
16 32   5   5 673
> class(volt$A)
[1] "factor"
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Code was cut and pasted from
R examples for Chapter 2

https://jlawson.byu.edu/RBOOK/
RExamples.html

the statement 
contrast=list(A=contr.FrF2,…

Converts actual factor levels for A stored 
as factors in data frame volt to coded
factor level contrasts A1 etc. This would
not be necessary if the design was 
Created by R package FrF2

The estimates 
are the regression coefficients or

½ of the Effects.

> library(FrF2)
> modv<-lm(y ~ A*B*C, data=volt, contrast=list(A=contr.FrF2, 
+ B=contr.FrF2, C=contr.FrF2))
> summary(modv)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) 668.5625     4.5178 147.985 4.86e-15 ***
A1          -16.8125     4.5178  -3.721  0.00586 ** 
B1            0.9375     4.5178   0.208  0.84079    
C1            5.4375     4.5178   1.204  0.26315    
A1:B1        -6.6875     4.5178  -1.480  0.17707    
A1:C1        12.5625     4.5178   2.781  0.02390 *  
B1:C1         1.8125     4.5178   0.401  0.69878    
A1:B1:C1     -5.8125     4.5178  -1.287  0.23422    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

Residual standard error: 18.07 on 8 degrees of freedom
Multiple R-squared:  0.772,     Adjusted R-squared:  0.5724 
F-statistic: 3.869 on 7 and 8 DF,  p-value: 0.0385
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Example analysis of a replicated 23 factorial

Note

Since the design is orthogonal insignificant terms dropped without
refitting to get a prediction equation
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developed by Fisher in the early part of the twentieth century and were orig-
inally used in agricultural experiments. Within 40 years there was extensive
use of experimental design techniques in the chemical industry. Figure 3.14 is
a diagram of a continuous chemical process. In this process continuous streams

Figure 3.14 Diagram of a Chemical Process
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of two reactants, A and B, are combined at a juncture called the mixing-T
where they begin to react. The mixture then flows into a reactor and is com-
bined with solvent and a catalyst and the reaction is completed. The result of
the reaction flows into a separator tank where the final product floats to the
top in a solvent phase while the catalyst and water go to the bottom of the
tank. The catalyst is concentrated and sent back into the reactor, while the
product, byproducts, and solvent are taken to a distillation column where the
product is removed and the solvent is recycled to the reactor.

One of the problems experienced in this process was the production of
byproduct (tars). Over time these tars would clog the reactor and force a
shutdown of the process for cleaning. It also required an additional process
step to purify the final product. Engineers decided to conduct experiments to
see if they could increase the percent conversion which would lower the amount
of byproducts. The factors they thought might affect the percent conversion
are shown in the table below.

Symbol Factor Name
A Excess of Reactant A (over molar amount)
B Catalyst Concentration
C Pressure in the Reactor
D Temperature of the Coated Mixing-T

Two levels of each factor were chosen that were spread apart as wide as
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Note

chem is a data
frame in daewr
package
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> modf <-lm( y ~ A*B*C*D, data = chem)
> summary(modf)

Call:
lm(formula = y ~ A * B * C * D, data = chem)

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  62.3125         NA      NA NA
A            -6.3125         NA      NA NA
B            17.8125         NA      NA NA
C             0.1875         NA      NA NA
D             0.6875         NA      NA NA
A:B          -5.3125         NA      NA NA
A:C           0.8125         NA      NA NA
B:C          -0.3125         NA      NA NA
A:D           2.0625         NA      NA NA
B:D          -0.0625         NA      NA NA
C:D          -0.6875         NA      NA NA
A:B:C        -0.1875         NA      NA NA
A:B:D        -0.6875         NA      NA NA
A:C:D         2.4375         NA      NA NA
B:C:D        -0.4375         NA      NA NA
A:B:C:D      -0.3125         NA      NA NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared:      1,     Adjusted R-squared:    NaN
F-statistic:   NaN on 15 and 0 DF,  p-value: NA
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> LenthPlot(modf, main = "Lenth Plot of Effects")
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> with(chem, (interaction.plot( A, B, y, type = "b", pch = c(18,24), 
main = "Interaction Plot of Catalyst by Excess A",
xlab = "Excess Reactant A", ylab = "Percent Conversion")))

B= Catalyst concentration
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x4=C, x5=AC, x6=BC, ... etc.) rather than by their name. However, the same
effects (A, B, and AB) are identified as having large posterior probabilities.
These results are consistent with what was seen in the normal and half-normal
plot of effects.

3.8 Verifying Assumptions of the Model

When there are replicate experimental units in each cell of a factorial model,
or when an interaction term can be assumed negligible and removed from the
model (as a result of a preliminary test like those described in Section 3.5.4 or
3.7.5), the normality and constant variance assumptions of the factorial model
can be verified with residual plots as described in Section 2.4.

However, in the case of 2k design with only one replicate per cell it is a little
more difficult to check the assumption of normality. The normality assumption
is most often violated by having one outlier or atypical value. The calculated
main effects and interactions in a two-level factorial can always be represented
as the difference of two averages, ȳ+ − ȳ−. When experimental errors follow a
normal distribution, the calculated effects for factors and interactions that
have a negligible influence on the response should be normally distributed
with mean zero. The significance of potential influential factors are judged by
their relation to a reference line of points on a normal or half-normal plot of
effects formed by the negligible factors. However, one atypical value will bias
each calculated effect positively or negatively away from zero. The variability
of the calculated effects for the non-influential factors and interactions will be
much larger and it will be more difficult to judge significance of effects, much
less check the normality assumption of residuals.

Daniel (1960) proposed a manual method for detecting and correcting an
outlier or atypical value in an unreplicated 2k design. This method consists of
three steps. First, the presence of an outlier is detected by a gap in the center
of a normal plot of effects. Second, the outlier is identified by matching the
signs of the insignificant effects with the signs of the coded factor levels and
interactions of each observation. The third step is to estimate the magnitude
of the discrepancy and correct the atypical value.

As an example, consider the normal plot of effects (Figure 3.19) from an
unreplicated 24 experiment described by Box (1991). In this plot it appears
that main effects B and C may be significant, but there is a vertical gap in
the line of insignificant effects that indicates an outlier may be present.

Lawson and Gatlin (2006) automated Daniel’s procedure identifying and
correcting an atypical value by making two passes through the data. If the
gap statistic (the ratio of the vertical gap in Figure 3.19 divided by Lenth’s
PSE statistic) is above the 50th percentile of its reference distribution in the
first pass through the data, PSE is recalculated after correcting the outlier
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Example analysis of an unreplicated design with an outlier

Note

BoxM is a data
frame in daewr
package taken
from Box(1991)

> library(daewr)
> data(BoxM)
> BoxM

A  B  C  D     y
1  -1 -1 -1 -1 47.46
2   1 -1 -1 -1 49.62
3  -1  1 -1 -1 43.13
4   1  1 -1 -1 46.31
5  -1 -1  1 -1 51.47
6   1 -1  1 -1 48.49
7  -1  1  1 -1 49.34
8   1  1  1 -1 46.10
9  -1 -1 -1  1 46.76
10  1 -1 -1  1 48.56
11 -1  1 -1  1 44.83
12  1  1 -1  1 44.45
13 -1 -1  1  1 59.15
14  1 -1  1  1 51.33
15 -1  1  1  1 47.02
16  1  1  1  1 47.90
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Example analysis of an unreplicated design with an outlier

> fullnormal(coef(modB)[-1],alpha=.2)
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Example analysis of an unreplicated design with an outlier

> Gaptest(BoxM)
Effect Report 

Label     Half Effect    Sig(.05) 
A          -0.400        no         
B          -2.110        no         
C           1.855        no         
D           0.505        no         
AB          0.455        no         
AC         -1.245        no         
AD         -0.290        no         
BC         -0.400        no         
BD         -0.590        no         
CD          0.745        no         
ABC         0.600        no         
ABD         0.360        no         
ACD         0.200        no         
BCD        -0.790        no         
ABCD        0.760        no         

Lawson, Grimshaw & Burt Rn Statistic =  1 
95th percentile of Rn =  1.201 
Initial Outlier Report 
Standardized-Gap =  3.353227 Significant at 50th percentile 
Final Outlier Report 
Standardized-Gap =  13.18936 Significant at 99th percentile 

Corrrected Data Report   
Response  Corrected Response   Detect Outlier 

47.46         47.46             no         
49.62         49.62             no         
43.13         43.13             no         
46.31         46.31             no         
51.47         51.47             no         
48.49         48.49             no         
49.34         49.34             no         
46.10         46.10             no         
46.76         46.76             no         
48.56         48.56             no         
44.83         44.83             no         
44.45         44.45             no         
59.15         52.75             yes        
51.33         51.33             no         
47.02         47.02             no         
47.90         47.90             no      
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Example analysis of an unreplicated design with an outlier

Effect Report 

Label     Half Effect    Sig(.05) 
A        -4.514306e-15        no         
B        -1.710000e+00        yes        
C         1.455000e+00        yes        
D         1.050000e-01        no         
AB        5.500000e-02        no         
AC       -8.450000e-01        yes        
AD        1.100000e-01        no         
BC        2.170070e-15        no         
BD       -1.900000e-01        no         
CD        3.450000e-01        no         
ABC       2.000000e-01        no         
ABD      -4.000000e-02        no         
ACD       6.000000e-01        no         
BCD      -3.900000e-01        no         
ABCD      3.600000e-01        no         

Lawson, Grimshaw & Burt Rn Statistic =  1.626089 
95th percentile of Rn =  1.201 
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Blocking a 24

Experimental Unit:

Dish Soaking Experiment

C=Soap Brand                D=Soaking Time

Factors:
A=Water Temperature  B=Soap Amount

Response: Number of Clean grid squares
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Blocking a 24

Blocking factor: Block 1 = W.F.,  1:30      4 E.U’s per block
Block 2 = W.F.,  1:00
Block 3 = Prego, 1:30   Confound AC, ABD
Block 4 = Prego, 1:00    AC(ABD)=BCD gets

confounded
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Create the design with FrF2

> library(FrF2)
> Bdish <- FrF2(16, 4, blocks=c("ABD", "BCD"), alias.block.2fis=TRUE, randomize=FALSE)
> Bdish

run.no run.no.std.rp Blocks  A  B  C  D
1      1         1.1.1      1 -1 -1 -1 -1
2      2         6.1.2      1 -1  1 -1  1
3      3        12.1.3      1  1 -1  1  1
4      4        15.1.4      1  1  1  1 -1

run.no run.no.std.rp Blocks  A  B  C  D
5      5         3.2.1      2 -1 -1  1 -1
6      6         8.2.2      2 -1  1  1  1
7      7        10.2.3      2  1 -1 -1  1
8      8        13.2.4      2  1  1 -1 -1

run.no run.no.std.rp Blocks  A  B  C  D
9       9         4.3.1      3 -1 -1  1  1
10     10         7.3.2      3 -1  1  1 -1
11     11         9.3.3      3  1 -1 -1 -1
12     12        14.3.4      3  1  1 -1  1

run.no run.no.std.rp Blocks  A  B  C  D
13     13         2.4.1      4 -1 -1 -1  1
14     14         5.4.2      4 -1  1 -1 -1
15     15        11.4.3      4  1 -1  1 -1
16     16        16.4.4      4  1  1  1  1
class=design, type= FrF2.blocked 
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Create the design with FrF2

> y<-c(0, 0, 12, 14, 1, 0, 1, 11, 10, 2, 33, 24, 3, 5, 41, 70)
> Bdish<-add.response(Bdish, response=y)
> Bdish
run.no run.no.std.rp Blocks  A  B  C  D  y

1      1         1.1.1      1 -1 -1 -1 -1  0
2      2         6.1.2      1 -1  1 -1  1  0
3      3        12.1.3      1  1 -1  1  1 12
4      4        15.1.4      1  1  1  1 -1 14
run.no run.no.std.rp Blocks  A  B  C  D  y

5      5         3.2.1      2 -1 -1  1 -1  1
6      6         8.2.2      2 -1  1  1  1  0
7      7        10.2.3      2  1 -1 -1  1  1
8      8        13.2.4      2  1  1 -1 -1 11

run.no run.no.std.rp Blocks  A  B  C  D  y
9       9         4.3.1      3 -1 -1  1  1 10
10     10         7.3.2      3 -1  1  1 -1  2
11     11         9.3.3      3  1 -1 -1 -1 33
12     12        14.3.4      3  1  1 -1  1 24

run.no run.no.std.rp Blocks  A  B  C  D  y
13     13         2.4.1      4 -1 -1 -1  1  3
14     14         5.4.2      4 -1  1 -1 -1  5
15     15        11.4.3      4  1 -1  1 -1 41
16     16        16.4.4      4  1  1  1  1 70
class=design, type= FrF2.blocked 
NOTE: columns run.no and run.no.std.rp are annotation, not part of 
the data frame
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Analyze the design ignoring blocks
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> mudu<-lm(y ~ A*B*C*D, data=Bdish)
> fullnormal(coef(mudu)[-1],alpha=.1)
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Analyze the design accounting for blocks

dish <- lm( y ~ Blocks + A * B * C * D, data = Bdish)

effects <- coef(dish) 
effects <- effects[5:19] 
effects <- effects[ !is.na(effects) ] 
library(daewr) 
halfnorm(effects, names(effects), alpha=.25) 
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An unlikely interaction

> x <- as.numeric(Bdish$B)
> x[x=="1"] <- "1 tbs"
> x[x=="2"] <- "2 tbs"
> Brand <- as.numeric(Bdish$D)
> Brand[Brand==1] <- "WF"
> Brand[Brand=="2"] <- "UP"
> interaction.plot(x, Brand, Bdish$y, type="l" ,xlab="Soap Amount B",ylab="Average Clean Squares")
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Criteria for choosing block defining contrasts

Confounding a 2k in blocks of size 2q

1. Choose k‐q block defining contrasts
2. Block defining contrasts plus their generalized interactions are confounded with blocks

Example: Confounding a 25 factorial in blocks of size 22=4       25/22 = 23 = 8 blocks, 7 df
5‐2 = 3  Choose ABC, CDE, ABCDE as block defining contrasts
then the generalized interactions ABDE, DE, AB, and C are also confounded with blocks.

To find the best generators and block defining contrasts for a particular design problem is not 
a simple task. Fortunately, statisticians have provided tables that show choices that are optimal 
in certain respects. Box et al. (1978) provide tables for block defining contrasts that will result
in a minimal number of low‐order interactions being confounded with blocks in a blocked 2k
design. Sun et al.(1997) provide an extensive catalog of block defining contrasts for 2k designs 
and generators for 2k−p designs along with the corresponding block defining contrasts that will 
result in best designs with regard to one of several quality criteria such as estimability order.

When not specied by the user, the function FrF2 in the R package FrF2 uses the block defining 
contrasts from Sun et al.'s (1997) catalog to create blocked 2k designs.
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Create design with Default FrF2 block contrasts

> Blocked25<-FrF2(32, 5, blocks=8, alias.block.2fis=TRUE, randomize=FALSE)
> summary(Blocked25)
Call:
FrF2(32, 5, blocks = 8, alias.block.2fis = TRUE, randomize = FALSE)

Experimental design of type  FrF2.blocked 
32  runs
blocked design with  8  blocks of size  4 

Factor settings (scale ends):
A  B  C  D  E

1 -1 -1 -1 -1 -1
2  1  1  1  1  1

Design generating information:
$legend
[1] A=A B=B C=C D=D E=E

$`generators for design itself`
[1] full factorial

$`block generators`
[1] ABCD ACE  BCE 

no aliasing of main effects or 2fis among experimental factors

Aliased with block main effects:
[1] AB CD
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Create design with Default FrF2 block contrasts

The design itself:
run.no run.no.std.rp Blocks  A  B  C  D  E

1      1         3.1.1      1 -1 -1 -1  1 -1
2      2         6.1.2      1 -1 -1  1 -1  1
3      3        28.1.3      1  1  1 -1  1  1
4      4        29.1.4      1  1  1  1 -1 -1
run.no run.no.std.rp Blocks  A  B  C  D  E

5      5         9.2.1      2 -1  1 -1 -1 -1
6      6        16.2.2      2 -1  1  1  1  1
7      7        18.2.3      2  1 -1 -1 -1  1
8      8        23.2.4      2  1 -1  1  1 -1

run.no run.no.std.rp Blocks  A  B  C  D  E
9       9        10.3.1      3 -1  1 -1 -1  1
10     10        15.3.2      3 -1  1  1  1 -1
11     11        17.3.3      3  1 -1 -1 -1 -1
12     12        24.3.4      3  1 -1  1  1  1

run.no run.no.std.rp Blocks  A  B  C  D  E
13     13         4.4.1      4 -1 -1 -1  1  1
14     14         5.4.2      4 -1 -1  1 -1 -1
15     15        27.4.3      4  1  1 -1  1 -1
16     16        30.4.4      4  1  1  1 -1  1

run.no run.no.std.rp Blocks  A  B  C  D  E
17     17         1.5.1      5 -1 -1 -1 -1 -1
18     18         8.5.2      5 -1 -1  1  1  1
19     19        26.5.3      5  1  1 -1 -1  1
20 20        31.5.4      5  1  1  1  1 -1

...
class=design, type= FrF2.blocked 
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
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Multiple process steps make complete randomization very
time consuming

Process Experiments

• Factor in Earlier Step 
become Whole Plot 
Factor

• Factors in Later Steps 
can be varied within and 
become subplot factors

Process Step 1

Process Step 2

Process Step 3
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Example - Process for making sausage casing

Grind Collagen

Dissolve to 
make Gel
Batch 

Extrude Gel
to make Casing 
Tube
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Test all 4 combinations of C and D in each batch
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Repeat with another lot of raw material (collagen)
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Whole plot model is like a blocked two-factor factorial
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Split-plot model has two error terms

Block (Collagen Lot)                            Block interactions
(variability in gel batches)
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Create the design with FrF2

> FrF2(32, 4, WPs = 8, nfac.WP = 2, factor.names = (c("A","B","C","D")))
run.no run.no.std.rp A  B WP3  C  D

1      1         4.1.4 -1 -1  -1  1  1
2      2         1.1.1 -1 -1  -1 -1 -1
3      3         3.1.3 -1 -1  -1  1 -1
4      4         2.1.2 -1 -1  -1 -1  1

run.no run.no.std.rp A B WP3  C  D
5      5        29.8.1 1 1   1 -1 -1
6      6        30.8.2 1 1   1 -1  1
7      7        32.8.4 1 1   1  1  1
8      8        31.8.3 1 1   1  1 -1

run.no run.no.std.rp A  B WP3  C  D
9       9        20.5.4 1 -1  -1  1  1
10     10        18.5.2 1 -1  -1 -1  1
11     11        17.5.1 1 -1  -1 -1 -1
12     12        19.5.3 1 -1  -1  1 -1

...
run.no run.no.std.rp A B WP3  C  D
29     29        15.4.3 -1 1   1  1 -1
30     30        16.4.4 -1 1   1  1  1
31     31        13.4.1 -1 1   1 -1 -1
32     32        14.4.2 -1 1   1 -1  1
class=design, type= FrF2.splitplot 
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
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The data frame sausage is in the daewr package

> library(daewr)
> library(lme4)
Loading required package: Matrix
Loading required package: Rcpp

Attaching package: 'lme4'

The following object is masked from 'package:daewr':

cake

> rmod2<-lmer(ys~ A + B + A:B + (1|Block) + (1|A:B:Block) + C + D + C:D + A:C + A:D + 
+ B:C + B:D + A:B:C + A:B:D + A:C:D + B:C:D + A:B:C:D, data=sausage)
> summary(rmod2)
Linear mixed model fit by REML ['lmerMod']
Formula: ys ~ A + B + A:B + (1 | Block) + (1 | A:B:Block) + C + D + C:D +  

A:C + A:D + B:C + B:D + A:B:C + A:B:D + A:C:D + B:C:D + A:B:C:D
Data: sausage

REML criterion at convergence: -69.4

Scaled residuals: 
Min      1Q  Median      3Q     Max 

-1.5089 -0.3102  0.0000  0.3102  1.5089 

Random effects:
Groups    Name        Variance  Std.Dev.
A:B:Block (Intercept) 0.0003396 0.01843 
Block     (Intercept) 0.0000000 0.00000 
Residual              0.0002385 0.01544 
Number of obs: 32, groups:  A:B:Block, 8; Block, 2
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Analysis of the fixed Effects

Effect of factor A depends
upon the combination
of levels of factors B and C

> anova(rmod2)
Analysis of Variance Table

Df Sum Sq Mean Sq F value
A        1 0.0068346 0.0068346 28.6517
B        1 0.0003926 0.0003926  1.6458
C        1 0.0038281 0.0038281 16.0480
D        1 0.0005281 0.0005281  2.2140
A:B      1 0.0001685 0.0001685  0.7065
C:D      1 0.0002531 0.0002531  1.0611
A:C      1 0.0001531 0.0001531  0.6419
A:D      1 0.0009031 0.0009031  3.7860
B:C      1 0.0000781 0.0000781  0.3275
B:D      1 0.0002531 0.0002531  1.0611
A:B:C    1 0.0013781 0.0013781  5.7773
A:B:D    1 0.0007031 0.0007031  2.9476
A:C:D    1 0.0000281 0.0000281  0.1179
B:C:D    1 0.0000281 0.0000281  0.1179
A:B:C:D  1 0.0000281 0.0000281  0.1179
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An unreplicated split-plot design

Bisgaard et al.(1996)  described an experiment that was performed to study the plasma treatment 
of paper, between electrodes in a low vacuum chamber reactor, to make it more susceptible to ink.  

The factors are shown below.

Levels
Factor                         Difficulty in Changing Levels
A ‐ pressure           Low          High
B ‐ Power Level     Low          High         difficult requires a new set up to change
C ‐ Gas Flow Rate  Low          High         difficult requires a new set up to change
D ‐ Type Gas          Oxygen     SiCl4 difficult requires a new set up to change
E ‐ Paper Type            A               B          easy both types can be treated in the same

run after setup is complete
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The data frame plasma is in the daewr package

Whole‐Plot Effects
A, B, AB, C, AC, BC, ABC, D, AD, BD, ABD, CD, ACD, BCD, ABCD

Split‐Plot Effects
E and interactions with E

> library(daewr)
> sol <- lm(y ~ A*B*C*D*E, data = plasma)
> effects <- coef(sol)
> effects <- effects[c(2:32)]
> Wpeffects <- effects[c(1:4, 6:11, 16:19, 26)] 
> Speffects <- effects[c(5,12:15,20:25,27:31)]
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Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Analysis by normal plot of all effects is misleading

> fullnormal(effects, names(Wpeffects), alpha = .10)
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Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Normal plot of whole-plot effects

> fullnormal(Wpeffects, names(Wpeffects), alpha = .10)
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Design and Analysis of Two-Level Factorials

Two-Level Factorials
The Justification for Two-Levels
Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Normal plot of split-plot effects

> fullnormal(Speffects, names(Speffects), alpha = .05)
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Part IV

Design and Analysis of Preliminary

Experiments for Estimating Sources of

Variance
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Outline of Part IV

4 Preliminary Exploration
Introduction
One-Factor Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example
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Introduction
One-Factor Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Preliminary Exploration
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Introduction
One-Factor Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Identify fruitful areas for identifying factors

Sampling Experiments 

• Identify Process Steps 
that contribute the most 
variability

• Later identify factors in 
variable process steps 
that cause the variability

Process Step 1

Process Step 2

Process Step 3

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Preliminary

Introduction
One-Factor Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Two sources of variability

Hare (1988) discussed experiments to control variability in dry soup 
mix “intermix” (vegetable oil, salt  flavorings etc.).

 too little not enough flavor

 too much too strong
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Introduction
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Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Soup batch and Sample within batch

Step 1. Make a batch of soup 
and dry it on a rotary dryer

Step 2. Place dry soup
in a mixer where

intermix is injected
through ports

Possible Factors 

A ‐ Ingredients
B ‐ Cook temperature
C ‐ Dryer temperature
D ‐ Dryer RPM, etc

E ‐ number of mixer  
ports for Vegetable oil

F ‐ temperature of 
mixer jacket

G ‐Mixing time
H ‐ Batch weight
I ‐ delay time between 

mixing and packaging,             
etc. …
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Method of Moments Estimators

3,4,3,1,4,1)(  rkjity jiiij 
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Source                 df MS            EMS
Factor T
Error
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Staggered Nested Designs for Multiple Factors
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Chemistry Example

Method of Moments Estimators

2

22 3



 b

0.0
3

7312.15535.0ˆ

7312.1ˆ

2

2








b



John Lawson FTC Short Course - Design and Analysis of Experiments with R



Preliminary

Introduction
One-Factor Designs
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Maximum Likelihood and REML estimators

Identity matrix

jiiij ty )( 
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Maximum Likelihood and REML estimators

Identity matrix

jiiij ty )( 

maximum likelihood estimators for       and      are found my maximizing  2
t

2
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Maximum Likelihood and REML estimators

Identity matrix

jiiij ty )( 

maximum likelihood estimators for       and      are found my maximizing  2
t

2

REML estimators for       and      are found my maximizing  2
t 2
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Maximum Likelihood and REML estimators

41.1ˆ
0.0ˆ

2

2







b

> library(daewr)
> library(lme4)
> mod2<-lmer(weight ~ 1 + (1|batch), data=soupmx)
> summary(mod2)
Linear mixed model fit by REML ['lmerMod']
Formula: weight ~ 1 + (1 | batch)

Data: soupmx

REML criterion at convergence: 37.5

Scaled residuals: 
Min       1Q   Median       3Q      Max 

-1.56147 -0.71722 -0.01614  0.43230  1.86604 

Random effects:
Groups   Name        Variance Std.Dev.
batch    (Intercept) 0.00     0.000   
Residual             1.41     1.187   
Number of obs: 12, groups:  batch, 4

Fixed effects:
Estimate Std. Error t value

(Intercept)   2.3742     0.3428   6.926
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Graphical Methods to Check Assumptions
Chemistry Example

The next step - screening factors

Step 2. Place dry soup
in a mixer where

intermix is injected
through ports
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Nested design

Process Step 1

Process Step 2

Process Step 3
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Staggered nested design
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Staggered nested design
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Method of moments estimation
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An Example

Mason et al. (1989) described a study where a staggered nested design was used to estimate the 
sources of variability in a continuous polymerization process. In this process polyethylene pellets 
are produced in lots of one hundred thousand pounds. A four‐stage design was used to partition 
the source of variability in tensile strength between lots, within lots and due to the measurement 
process.
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Data from the first 10 of 30 lots
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Method of moments estimators

Data frame 
polymer
is in the 
daewr
package
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REML estimators
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Variance components are pooled variances
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Computing and graphing variances in R

> library(daewr)
> data(polymer)
> y <- array( polymer$strength, c(4,30) )
> sd1 <- sqrt( (y[2,] - y[1,])**2 / 2)
> sd2 <- sqrt( (2/3) * ( y[3,] - (y[1,] + y[2,]) / 2)**2 )
> sd3 <- sqrt( (3/4) * (y[4,] - (y[1,] + y[2,] + y[3,] )/3 )**2)
> osd2 <- sort(sd2)
> r <- c( 1: length(sd2))
> zscore <- qnorm( ( ( r - .5 ) / length(sd2) +1 )/ 2)
> plot( zscore, osd2, main = "Half-normal plot of prep(box) standard 
+ deviations", xlab = "Half Normal Score", ylab = "std. due to prep within 
+ box") 
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Computing and graphing variances in R

Lot 19
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Odd value in Lot 19
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Reanalysis excluding lot 19
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Catalyst Support Material

•Interest in catalyst support in lab
•The rate of catalyst reaction is related to the available number of catalytic sites. To increase the
number of active sites, catalysts are dispersed on a support

•Interest in making Al2O3 catalyst support
1. High thermal stability
2. High surface area
3. Mesoporous nature

•Important catalyst support properties

1. High surface area→increase catalyst dispersion and catalytic reaction sites→decrease reaction times.

2. Optimal pore size→each catalytic system requires a unique pore size→better diffusion and selectivity.

3. Thermal stability→many catalytic reactions take place at elevated temperatures.

Support 
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Applications of Alumina Catalyst Support

• Aluminum oxides support applications

1. Automotive Gasoline Catalytic Converters, which converts toxic chemical (carbon monoxide and unburned
hydrocarbon) in exhaust to CO2 and H2O.

2. Fischer‐Tropsch synthesis (FTS), which liquid fuels are produced from natural gas.

Fischer‐Tropsch
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Process to Create Alumina Catalyst Support

Basic Synthesis Method

Rinse

Calcine

Dry

Mix metal salt 
and base
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Exploration Experiment 1

> Exp1
Batch Oven PoreV SA

1      1    1  1.05 172
2      1    2  1.35 188
3      1    3  1.13 164
4      2    1  1.21 183
5      2    2  1.39 193
6      2    3  1.28 190
7      3    1  1.26 182
8      3    2  1.41 189
9      3    3  1.25 183
10     4    1  1.27 172
11     4    2  1.40 183
12     4    3  1.28 172
13     5    1  1.20 171
14     5    2  1.42 189
15     5    3  1.17 171
16     6    1  1.19 175
17     6    2  1.33 180
18     6    3  1.22 179
19     7    1  1.18 165
20     7    2  1.37 183
21     7    3  1.08 163
22     8    1  1.22 167
23     8    2  1.30 169
24     8    3  1.18 184
25     9    1  1.21 173
26     9    2  1.39 186
27     9    3  1.11 165
28    10    1  1.17 156
29    10    2  1.27 168
30    10    3  1.00 155

Batch

Sample

Oven

Batch

Oven

O1        O2 O3 X

O1    O2 O3

O1 = O2 ≠ O3
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Analysis of Exploration Experiment 1

> modE1<-lmer(PoreV ~ 1 + (1|Batch), data=Exp1)

> summary(modE1)
Linear mixed model fit by REML ['lmerMod']
Formula: PoreV ~ 1 + (1 | Batch)

Data: Exp1

REML criterion at convergence: -42.4

Scaled residuals: 
Min       1Q   Median       3Q      Max 

-2.21247 -0.57360 -0.07284  0.72383  1.61155 

Random effects:
Groups   Name        Variance Std.Dev.
Batch    (Intercept) 0.00000  0.0000  
Residual             0.01206  0.1098  
Number of obs: 30, groups:  Batch, 10

Fixed effects:
Estimate Std. Error t value

(Intercept)  1.24300    0.02005   61.99
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Analysis of Exploration Experiment 1

> modE1<-lmer(SA ~ 1 + (1|Batch), data=Exp1)
> summary(modE1)
Linear mixed model fit by REML ['lmerMod']
Formula: SA ~ 1 + (1 | Batch)

Data: Exp1

REML criterion at convergence: 218.1

Scaled residuals: 
Min      1Q  Median      3Q     Max 

-1.3054 -0.6465 -0.1551  0.8390  1.5276 

Random effects:
Groups   Name        Variance Std.Dev.
Batch    (Intercept) 37.09    6.090   
Residual             71.77    8.472   
Number of obs: 30, groups:  Batch, 10

Fixed effects:
Estimate Std. Error t value

(Intercept)   175.67       2.47   71.12
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Residual Variability

> boxplot(SA~Oven, data=Exp1, ylab="Surface Area", xlab="Oven Number")
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Possible Explanation

Batch

Sample

Oven

O1            O2 O3 X

maybe extra time on the bench affects PoreV and SA not Oven
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Exploratory Experiment 2

> Exp2
Batch Oven PoreV SA

1      1    1  1.19 170
2      1    2  1.18 172
3      1    3  1.05 186
4      2    1  1.11 180
5      2    2  1.06 180
6      2    3  1.14 197
7      3    1  1.16 214
8      3    2  1.49 208
9      3    3  1.33 292
10     4    1  1.44 224
11     4    2  1.32 210
12 4    3  2.22 325

Batch

Oven

O1    O2 O3

Batch

Sample

Oven

O1    O2 O3 X
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Another Conjecture

> Exp2
Batch Oven PoreV SA

1      1    1  1.19 170
2      1    2  1.18 172
3      1    3  1.05 186
4      2    1  1.11 180
5      2    2  1.06 180
6      2    3  1.14 197
7      3    1  1.16 214
8      3    2  1.49 208
9      3    3  1.33 292
10     4    1  1.44 224
11     4    2  1.32 210
12 4    3  2.22 325

Batch

Oven

O1    O2 O3

Batch

Sample

Oven

O1    O2 O3 X

Batches 3 and 4 used a different (slower) filter and thus 
had a longer exposure time  to sec‐butanol which seemed
to affect Pore Volume and Surface Area
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Experiment to Estimate Effects

> Exp3
Batch Mix_Time Bench_Time Exp_Time Boats PoreV SA

1      1        1          1        1     1  0.73 177
2      1        1          1       -1    -1  0.64 170
3      1        1         -1       -1    -1  0.66 187
4      1        1         -1        1     1  0.68 210
5      2       -1         -1        1     1  1.17 191
6      2       -1          1        1    -1  1.13 169
7      2       -1         -1       -1    -1  1.11 203
8      2       -1          1       -1     1  1.13 173
9      3        1          1       -1     1  0.95 137
10     3        1          1        1     1  0.98 137
11     3        1         -1       -1    -1  0.96 191
12     3        1         -1        1    -1    NA  NA
13     4       -1         -1        1     1  0.99 218
14     4       -1          1       -1    -1  1.06 191
15     4       -1          1        1    -1  1.24 191
16     4       -1         -1       -1     1  1.11 162

Boats = Exposure Time

Boats = Bench Time

Boats = ‐ Bench Time

Boats = Bench Time× Exposure Time

Split‐Plot Fractional Factorial

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Preliminary

Introduction
One-Factor Designs
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Experiment to Further Study Relationships

> Exp4
Batch Mix_Time Exp_Time Boats PoreV SA

1      1        1        1    -1  0.93 187
2      1        1       -1     1  0.94 132
3      2        1        1     1  0.68 210
4      2        1       -1    -1  0.66 187
5      3       -1       -1    -1  1.31 170
6      3       -1        1     1  1.19 217
7      4        0        1     0  0.75 143
8      4        0        0     1  0.75 137
9      5       -1        0     0  1.00 164
10     5       -1        0     0  1.02 171
11     6       -1        1    -1  1.11 203
12     6       -1       -1     1  1.17 191
13     7        0        0     1  0.70 140
14     7        0        1     0  0.76 171

Split‐Plot 33 Fractional Factorial
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Results of Experiments

Preliminary        Screening              Effect                      Optimization
Exploration         Factors                  Estimation

Exp1,Exp2             Exp3    Exp4

1. High surface area→increase catalyst dispersion and catalytic reaction sites→decrease reaction times.
2. Optimal pore size→each catalytic system requires a unique pore size→better diffusion and selectivity.

Properties

Factor Pore Volume Surface Area

Mixing Time +

Bench Time −

Exposure Time to sec‐Butanol +

Effect of Factors on Catalyst Support Properties
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Part V

Design and Analysis of Screening

Experiments
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Outline of Part V

5 Design and Analysis of Screening Experiments
Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial
Designs
Criteria for Choosing Generators for Fractional Factorial
Designs
Augmenting Fractional Factorial Designs to Resolve
Confounding
Plackett-Burman and Model Robust Screening Designs
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Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Number of Experiments required for Two-Level Factorials

Number of Factors Number of Experiments

4 16

5 32

6 64

7 128

8 256

9 512
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Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

One-at-a-Time Experiments

A Poor Solution is to Use One‐at‐a‐Time Experiments

Run      A     B     C      D     E      F   G     H
1 - - - - - - - -
2 +  - - - - - - -
3 - +  - - - - - -
4 - - +  - - - - -
5 - - - +  - - - -
6 - - - - +  - - -
7 - - - - - +  - -
8 - - - - - - +  -
9 - - - - - - - +
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Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Fractional Factorial Designs

Method for strategically picking a subset of a two-Level
Factorial

Used for Screening purposes

Has much higher Power for Detecting Effects than
One-at-a-Time Experiments

Can be used to estimate some interaction effects and do
limited optimization
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Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Paradigms that Justify the Use of Fractional Factorials

Effect Sparsity Principle–Box and Meyer (1986)

Hierarchical Ordering Principle–Wu and Hamada(2000)

Effect Heredity Principle–Hamada and Wu(1992)
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Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Procedure for Constructing a Half-Fraction
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One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

The Base Design

142  Base Design
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Creating the Design with FrF2

> library(FrF2)
> soup <- FrF2(16, 5, generators = "ABCD", factor.names = list(A=c(1,3),
+  B=c("Cool","Ambient"), 
+             C=c(60,80),D=c(1500,2000), E=c(7,1)), randomize = FALSE)
> soup

A       B  C    D E
1  1    Cool 60 1500 1
2  3    Cool 60 1500 7
3  1 Ambient 60 1500 7
4  3 Ambient 60 1500 1
5  1    Cool 80 1500 7
6  3    Cool 80 1500 1
7  1 Ambient 80 1500 1
8  3 Ambient 80 1500 7
9  1    Cool 60 2000 7
10 3    Cool 60 2000 1
11 1 Ambient 60 2000 1
12 3 Ambient 60 2000 7
13 1    Cool 80 2000 1
14 3    Cool 80 2000 7
15 1 Ambient 80 2000 7
16 3 Ambient 80 2000 1
class=design, type= FrF2.generators 
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Adding the Responses

> y <- c(1.13, 1.25, .97, 1.70, 1.47, 1.28, 1.18, .98, .78,
+        1.36, 1.85, .62, 1.09, 1.10, .76, 2.10 )
> library(DoE.base)
> soup <- add.response( soup , y )
> soup

A       B  C    D E    y
1  1    Cool 60 1500 1 1.13
2  3    Cool 60 1500 7 1.25
3  1 Ambient 60 1500 7 0.97
4  3 Ambient 60 1500 1 1.70
5  1    Cool 80 1500 7 1.47
6  3    Cool 80 1500 1 1.28
7  1 Ambient 80 1500 1 1.18
8  3 Ambient 80 1500 7 0.98
9  1    Cool 60 2000 7 0.78
10 3    Cool 60 2000 1 1.36
11 1 Ambient 60 2000 1 1.85
12 3 Ambient 60 2000 7 0.62
13 1    Cool 80 2000 1 1.09
14 3    Cool 80 2000 7 1.10
15 1 Ambient 80 2000 7 0.76
16 3 Ambient 80 2000 1 2.10
class=design, type= FrF2.generators 
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Checking the Alias Pattern

> mod1 <- lm( y ~ (.)^4, data = soup)
> aliases(mod1)

A = B:C:D:E
B = A:C:D:E
C = A:B:D:E
D = A:B:C:E
E = A:B:C:D
A:B = C:D:E
A:C = B:D:E
A:D = B:C:E
A:E = B:C:D
B:C = A:D:E
B:D = A:C:E
B:E = A:C:D
C:D = A:B:E
C:E = A:B:D
D:E = A:B:C
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Paradigms that Simplify the Interpretation of Results

Effect Sparsity Principle–Box and Meyer (1986)

Hierarchical Ordering Principle–Wu and Hamada(2000)

Effect Heredity Principle–Hamada and Wu (1992)
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Analyzing the Data

> mod2<-lm(y~(.)^2, data=soup)
> summary(mod2)

Call:
lm.default(formula = y ~ (.)^2, data = soup)

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  1.22625         NA      NA NA
A1           0.07250         NA      NA NA
B1           0.04375         NA      NA NA
C1           0.01875         NA      NA NA
D1          -0.01875         NA      NA NA
E1           0.23500         NA      NA NA
A1:B1        0.00750         NA      NA NA
A1:C1        0.04750         NA      NA NA
A1:D1        0.01500         NA      NA NA
A1:E1        0.07625         NA      NA NA
B1:C1       -0.03375         NA      NA NA
B1:D1        0.08125         NA      NA NA
B1:E1        0.20250         NA      NA NA
C1:D1        0.03625         NA      NA NA
C1:E1       -0.06750         NA      NA NA
D1:E1        0.15750         NA      NA NA
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Half-Normal Plot of Coefficients

> library(daewr)
> LGB(coef(mod2)[-1], rpt=FALSE)
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Interpretation of Results

> soup <- FrF2(16, 5, generators = "ABCD", factor.names =
+ list(Ports=c(1,3),Temp=c("Cool","Ambient"), MixTime=c(60,80),
+ BatchWt=c(1500,2000), delay=c(7,1)), randomize = FALSE)
> y <- c(1.13, 1.25, .97, 1.70, 1.47, 1.28, 1.18, .98, .78,
+ 1.36, 1.85, .62, 1.09, 1.10, .76, 2.10 )
> library(DoE.base)
> soup <- add.response( soup , y )
> delay <- as.numeric(sub(-1, 7, soup$delay))
> temp <- soup$Temp
> interaction.plot(delay, temp, soup$y, type="b",
+ pch=c(24,18,22), leg.bty="o",
+ main="Interaction Plot for Mixing Temperature by Delay time", 
+ xlab="Delay Time (days)", ylab="Average S.D. Fill Weight")
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Confounding in Higher Order Fractions

powerfraction   theis  factors, ofnumber   theis  22
2
1 pkpkk

p


· In a one half fraction of a 2k experiment every effect that could
be estimated was confounded with one other effect, thus one half
the effects had to be assumed negligible in order to interpret or
explain the results

· In a one quarter fraction of a 2k experiment every effect that can
be estimated is confounded with three other effects, thus three 
quarters of the effects must be assumed negligible in order to 
interpret or explain the results

· In a one eighth fraction of a 2k experiment every effect that can
be estimated is confounded with seven other effects, thus seven 
eights of the effects must be assumed negligible in order to 
interpret or explain the results, etc.
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Procedure for Constructing Higher Order Fractions

Creating a 2k-p Design

1. Create a full two-level factorial in k-p factors

2. Add each of the remaining p factors by assigning them 
to a column of signs for an interaction among the first 
k-p columns
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Example of Quarter Fraction

These are the generators

“
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Example of Quarter Fraction

the generalized 
interaction

the generators

the defining relation

“
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Create the Design in FrF2

> frac <- FrF2( 16, 6, generators = c("AB", "AC"),randomize=FALSE)
> frac

A  B  C  D  E  F
1  -1 -1 -1 -1  1  1
2   1 -1 -1 -1 -1 -1
3  -1  1 -1 -1 -1  1
4   1  1 -1 -1  1 -1
5  -1 -1  1 -1  1 -1
6   1 -1  1 -1 -1  1
7  -1  1  1 -1 -1 -1
8   1  1  1 -1  1  1
9  -1 -1 -1  1  1  1
10  1 -1 -1  1 -1 -1
11 -1  1 -1  1 -1  1
12  1  1 -1  1  1 -1
13 -1 -1  1  1  1 -1
14  1 -1  1  1 -1  1
15 -1  1  1  1 -1 -1
16  1  1  1  1  1  1
class=design, type= FrF2.generators 
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View the Alias Structure

> y <- runif( 16, 0, 1 )
> aliases( lm( y ~ (.)^3, data = frac) )

A = B:E = C:F            
B = C:E:F = A:E          
C = B:E:F = A:F          
E = A:B = B:C:F          
F = A:C = B:C:E          
A:D = C:D:F = B:D:E      
B:C = E:F = A:B:F = A:C:E
B:D = A:D:E              
B:F = C:E = A:B:C = A:E:F
C:D = A:D:F              
D:E = A:B:D              
D:F = A:C:D              
B:C:D = D:E:F            
B:D:F = C:D:E 

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Screening

Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Some Generators Better than Others

> frac <- FrF2( 16, 6, generators = c("ABC", "BCD"),randomize=FALSE)
> aliases( lm( y ~ (.)^3, data = frac) )

A = B:C:E = D:E:F            
B = A:C:E = C:D:F            
C = B:D:F = A:B:E            
D = A:E:F = B:C:F            
E = A:D:F = A:B:C            
F = A:D:E = B:C:D            
A:B = C:E                    
A:C = B:E                    
A:D = E:F                    
A:E = B:C = D:F              
A:F = D:E                    
B:D = C:F                    
B:F = C:D                    
A:B:D = A:C:F = B:E:F = C:D:E
A:B:F = A:C:D = B:D:E = C:E:F
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Criteria for Choosing Generators

Resolution–Box and Hunter(1961)

Minimum Aberration–Fries and Hunter 1980

Maximum Number of Clear Effects–Chen et. al.(1993)
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Criteria for Choosing Generators

Resolution–Shortest Word in the Defining Relation

Resolution III Main effects confounded with two-factor interactions

Resolution IV Main effects confounded with three-factor
interactions, two-factor interactions confounded with
other two-factor interactions

Resolution V Main effects and two-factor interactions estimable,
assuming three factor and higher order interactions
negligible

Resolution R Each subset of R-1 factors forms a full factorial
possibly replicated
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FrF2 Default-Minimum Aberration Design

> ## maximum resolution minimum aberration design with 9 factors in 32 runs
> ## show design information instead of design itself
> design.info(FrF2(32,9))

$catlg.entry
Design:  9-4.1 

32  runs,  9  factors,  
Resolution  IV 
Generating columns:  7 11 19 29 
WLP (3plus):  0 6 8 0 0 ,  8  clear 2fis

Factors with all 2fis clear:  J

$aliased
$aliased$legend
[1] "A=A" "B=B" "C=C" "D=D" "E=E" "F=F" "G=G" "H=H" "J=J"

$aliased$main
character(0)

$aliased$fi2
[1] "AB=CF=DG=EH" "AC=BF"       "AD=BG"       "AE=BH"       "AF=BC"      
[6] "AG=BD"       "AH=BE"       "CD=FG"       "CE=FH"       "CG=DF"      
[11] "CH=EF"       "DE=GH"       "DH=EG"      

8 Clear 
two‐factor
interactions

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Screening

Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

FrF2 Option-Maximum Number of Clear Effects

> ## maximum number of free 2-factor interactions instead of minimum aberration
> ## show design information instead of design itself
>design.info(FrF2(32,9,MaxC2=TRUE))
$catlg.entry
Design:  9-4.2 

32  runs,  9  factors,  
Resolution  IV 
Generating columns:  7 11 13 30 
WLP (3plus):  0 7 7 0 0 ,  15  clear 2fis

Factors with all 2fis clear:  E J

$aliased
$aliased$legend
[1] "A=A" "B=B" "C=C" "D=D" "E=E" "F=F" "G=G" "H=H" "J=J"

$aliased$main
character(0)

$aliased$fi2
[1] "AB=CF=DG" "AC=BF=DH" "AD=BG=CH" "AF=BC=GH" "AG=BD=FH" "AH=CD=FG" "BH=CG=DF"

15 Clear 
two‐factor
interactions

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Screening

Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Example of One-eighth Fraction

Iron Oxide Coated Sand (IOCS) used to remove arsenic from ground
water in simple household filtration systems. Coating solution made of 
ferric nitrate and sodium hydroxide with NAOH added to control pH.

Ramakrishna et. al. (2006) conducted experiments to optimize
The coating process.

Mix Coating
Solution

Age Coating
Solution

Pour over
clean sand

Mix Dry Filter
Spiked 
Water 
Samplere

pe
at

noyes
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Factors and Levels
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Create Design with FrF2 in Coded Factor Levels

> arsrm<-FrF2(8,6,generators = c("AB", "AC", "BC"), randomize=FALSE)
> y<-c(69.95, 58.65, 56.25, 53.25, 94.40, 73.45, 10.0, 2.11)
> library(DoE.base)
> arsrm2<-add.response(arsrm,y)
> arsrm2

A  B  C  D  E  F     y
1 -1 -1 -1  1  1  1 69.95
2  1 -1 -1 -1 -1  1 58.65
3 -1  1 -1 -1  1 -1 56.25
4  1  1 -1  1 -1 -1 53.25
5 -1 -1  1  1 -1 -1 94.40
6  1 -1  1 -1  1 -1 73.45
7 -1  1  1 -1 -1  1 10.00
8  1  1  1  1  1  1  2.11
class=design, type= FrF2.generators 
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Analysis of the Data
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> Lmod<-lm(y ~ (.)^2,data=arsrm2)
> estef<-coef(Lmod)[c(2:7,12)]
> library(daewr)
> LGB(estef,rpt=FALSE)

> aliases(Lmod)

A = B:D = C:E  
B = C:F = A:D  
C = B:F = A:E  
D = E:F = A:B  
E = D:F = A:C  
F = B:C = D:E  
A:F = B:E = C:D

B

F
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Possible Interpretations of Results from ’Effect Heredity’

Important factors                                                                        Optimal Levels

1.   B – Drying Temperature &  F – PH of Spiked Water               Low Drying Temp. 
and  Low PH

2. B – Drying Temperature & BC interaction                                Low Drying Temp.   
C – Fe concentration in coating                              High Fe Conc.    

3. F – PH of Spiked Water &  CF interaction                                 Low PH
High Fe conc.
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Fractional Factorials in Split-Plot Designs

Resolution III
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Split-Plot Confounding

BCPQRAPQRABCIAPQRIABCI  ))((

Resolution III, but less aberration
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Creating a Minimum Aberration Split-Plot Fractional
Factorial with FrF2

> library(FrF2)
> SPFF2 <-FrF2(16,6, WPs = 4, nfac.WP = 3, factor.names = c("A","B","C","P","Q","R"))
> print(SPFF2)

run.no run.no.std.rp A  B  C  P  Q  R
1      1        12.3.4 1 -1 -1  1  1  1
2      2         9.3.1 1 -1 -1 -1 -1  1
3      3        11.3.3 1 -1 -1  1 -1 -1
4      4        10.3.2 1 -1 -1 -1  1 -1

run.no run.no.std.rp A B C  P  Q  R
5      5        14.4.2 1 1 1 -1  1 -1
6      6        16.4.4 1 1 1  1  1  1
7      7        15.4.3 1 1 1  1 -1 -1
8      8        13.4.1 1 1 1 -1 -1  1

run.no run.no.std.rp A B  C  P  Q  R
9       9         5.2.1 -1 1 -1 -1 -1 -1
10     10         7.2.3 -1 1 -1  1 -1  1
11     11         8.2.4 -1 1 -1  1  1 -1
12     12         6.2.2 -1 1 -1 -1  1  1

run.no run.no.std.rp A  B C  P  Q  R
13     13         4.1.4 -1 -1 1  1  1 -1
14     14         2.1.2 -1 -1 1 -1  1  1
15     15         1.1.1 -1 -1 1 -1 -1 -1
16     16         3.1.3 -1 -1 1  1 -1  1
class=design, type= FrF2.splitplot 
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
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Checking the Alias Pattern

> y<-rnorm(16,0,1)
> aliases(lm( y ~ (.)^3, data=SPFF2))

A = P:Q:R = B:C    
B = A:C            
C = A:B            
P = A:Q:R          
Q = A:P:R          
R = A:P:Q          
A:P = Q:R = B:C:P  
A:Q = P:R = B:C:Q  
A:R = P:Q = B:C:R  
B:P = A:C:P = C:Q:R
B:Q = A:C:Q = C:P:R
B:R = A:C:R = C:P:Q
C:P = A:B:P = B:Q:R
C:Q = A:B:Q = B:P:R
C:R = A:B:R = B:P:Q
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Analyzing a Split-Plot Fractional Factorial

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Screening

Introduction
Half-Fractions of Two-Level Factorial Designs
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Screening Designs

Whole-Plot and Sub-Plot Effects
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Analysis with R

> spexp <- FrF2(16,5,WPs=8,nfac.WP=3, factor.names=c("A","B","C","P","Q"),randomize=FALSE)
> y<-c(18.0,21.5,27.5,17.0,22.5,15.0,19.0,22.0,13.0,-4.5,17.5,14.5,0.5,5.5,24.0,13.5)
> sol<-lm( y~A*B*C*P*Q, data=spexp)
> summary(sol)

Call:
lm.default(formula = y ~ A * B * C * P * Q, data = spexp)

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients: (16 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

1 (Intercept)     15.4062         NA      NA NA
2 A1              -4.9063         NA      NA NA
3 B1              -0.1562         NA      NA NA
4 C1               3.9688         NA      NA NA
5 P1              -2.3438         NA      NA NA
6 Q1              -3.4062         NA      NA NA
7 A1:B1            0.5313         NA      NA NA
8 A1:C1            2.9063         NA      NA NA
9 B1:C1            0.4062         NA      NA NA
10 A1:P1           -0.9063         NA      NA NA
11 B1:P1            1.0938         NA      NA NA
12 C1:P1           -0.2812         NA      NA NA
13 A1:Q1           -0.3438         NA      NA NA
14 B1:Q1            0.1563         NA      NA NA
15 C1:Q1            0.7812         NA      NA NA
16 P1:Q1            0.5938         NA      NA NA

Whole
Plot 
Effects

note:
ABC=PQ
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Separate Normal Plots of Whole-Plot and Sub-Plot Effects

> effects <-coef(sol)
> Wpeffects <- effects[ c(2:4, 7:9, 16) ]
> Speffects <- effects[ c(5:6, 10:15) ]
> fullnormal(Speffects, names(Speffects), alpha=.20)
> fullnormal(Wpeffects, names(Wpeffects), alpha=.10)
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Augmenting by Foldover

D confounded with AB

B is clear and
D no longer confounded with AB
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Augmenting the IOCS Experiment

> arsrm3<-fold.design(arsrm, columns='full')
> y<-c(69.95,58.65,56.25,53.25,94.4,73.45,10.0,2.11,16.2,52.85,9.05,31.1,7.4,
+ 9.9,10.85,48.75)
> arsrm4<-add.response(arsrm3,y)
> arsrm4

A  B  C     fold  D  E  F     y
1  -1 -1 -1 original  1  1  1 69.95
2   1 -1 -1 original -1 -1  1 58.65
3  -1  1 -1 original -1  1 -1 56.25
4   1  1 -1 original  1 -1 -1 53.25
5  -1 -1  1 original  1 -1 -1 94.40
6   1 -1  1 original -1  1 -1 73.45
7  -1  1  1 original -1 -1  1 10.00
8   1  1  1 original  1  1  1  2.11
9   1  1  1   mirror -1 -1 -1 16.20
10 -1  1  1   mirror  1  1 -1 52.85
11  1 -1  1   mirror  1 -1  1  9.05
12 -1 -1  1   mirror -1  1  1 31.10
13  1  1 -1   mirror -1  1  1  7.40
14 -1  1 -1   mirror  1 -1  1  9.90
15  1 -1 -1   mirror  1  1 -1 10.85
16 -1 -1 -1   mirror -1 -1 -1 48.75
class=design, type= FrF2.generators.folded 

Combining a resolution III design
with a mirror image (signs reversed
on all factors) results in a resolution
IV design where no main effect is 
confounded with a two‐factor 
interaction
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Alternative Explanations after Analysis of Combined Data

AD confounded with CF in the combined data
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Augmentation by Optimal Design

Additional runs to make
X'X invertible

Choose additional runs to maximize
|X'X| i.e., D-optimal (Dykstra(1971))
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Change Factors to Numeric in New Data Frame

> A <- (as.numeric(arsrm3$A)-1.5)/.5
> B <- (as.numeric(arsrm3$B)-1.5)/.5
> C <- (as.numeric(arsrm3$C)-1.5)/.5
> D <- (as.numeric(arsrm3$D)-1.5)/.5
> E <- (as.numeric(arsrm3$E)-1.5)/.5
> F <- (as.numeric(arsrm3$F)-1.5)/.5
> Block<-arsrm3$fold
> augmn<-data.frame(A,B,C,D,E,F,Block)
> augmn

A  B  C  D  E  F    Block
1  -1 -1 -1  1  1  1 original
2   1 -1 -1 -1 -1  1 original
3  -1  1 -1 -1  1 -1 original
4   1  1 -1  1 -1 -1 original
5  -1 -1  1  1 -1 -1 original
6   1 -1  1 -1  1 -1 original
7  -1  1  1 -1 -1  1 original
8   1  1  1  1  1  1 original
9   1  1  1 -1 -1 -1   mirror
10 -1  1  1  1  1 -1   mirror
11  1 -1  1  1 -1  1   mirror
12 -1 -1  1 -1  1  1   mirror
13  1  1 -1 -1  1  1   mirror
14 -1  1 -1  1 -1  1   mirror
15  1 -1 -1  1  1 -1   mirror
16 -1 -1 -1 -1 -1 -1   mirror
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Use Federov Algorithm in AlgDesign Package to Find 8
Additional Runs that Maximize the Determinant

> library(AlgDesign)
> cand<-gen.factorial(levels = 2, nVar = 6, varNames = c("A","B","C","D","E","F"))
> Block<-rep('cand',64)
> cand<-data.frame(A=cand$A, B=cand$B, C=cand$C, D=cand$D, E=cand$E, F=cand$F, 
+ Block)
> all<-rbind(augmn, cand)
> fr<-1:16
> optim<-optFederov( ~ A + B + F + I(A*D) + I(C*F), data=all, nTrials =24, 
+ criterion = "D", nRepeats =10, augment=TRUE, rows=fr)
> newruns<-optim$design[ 17:24, ]
> newruns

A  B  C  D  E  F Block
18  1 -1 -1 -1 -1 -1  cand
23 -1  1  1 -1 -1 -1  cand
32  1  1  1  1 -1 -1  cand
43 -1  1 -1  1  1 -1  cand
49 -1 -1 -1 -1 -1  1  cand
60  1  1 -1  1 -1  1  cand
63 -1  1  1  1 -1  1  cand
72  1  1  1 -1  1  1  cand
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Plackett-Burman Designs Obtained by Cyclically Rotation
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Creating a PB Design with FrF2

> library(FrF2)
> pb( nruns = 12, randomize=FALSE)
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Example use of a Plackett-Burman Design

Hunter et al. (1982) used a Plackett-Burman Design to study the fatigue life of weld-repaired castings.

Note: This design is created using a different first row than FrF2 uses.
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Recall the Design from the BsMD package

> data( PB12Des, package = "BsMD" )
> colnames(PB12Des) <- c("c11", "c10", "c9", "c8", "G", "F", "E", "D", "C", "B", "A")
> castf <- PB12Des[c(11,10,9,8,7,6,5,4,3,2,1)]
> castf

A  B  C  D  E  F  G c8 c9 c10 c11
1   1 -1  1  1  1 -1 -1 -1  1  -1   1
2  -1  1  1  1 -1 -1 -1  1 -1   1   1
3   1  1  1 -1 -1 -1  1 -1  1   1  -1
4   1  1 -1 -1 -1  1 -1  1  1  -1   1
5   1 -1 -1 -1  1 -1  1  1 -1   1   1
6  -1 -1 -1  1 -1  1  1 -1  1   1   1
7  -1 -1  1 -1  1  1 -1  1  1   1  -1
8  -1  1 -1  1  1 -1  1  1  1  -1  -1
9   1 -1  1  1 -1  1  1  1 -1  -1  -1
10 -1  1  1 -1  1  1  1 -1 -1  -1   1
11  1  1 -1  1  1  1 -1 -1 -1   1  -1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1  -1  -1
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Analysis Shows only Factor F Possibly Significant

> y<-c(4.733, 4.625, 5.899, 7.0, 5.752, 5.682, 
+ 6.607, 5.818, 5.917, 5.863, 6.058, 4.809)
> castf<-cbind(castf,y)
> modpb<-lm(y~ (.), data=castf)
> library(daewr)
> cfs<-coef(modpb)[2:12]
> names<-names(cfs)
> halfnorm(cfs, names, alpha = .35, 
+ refline=FALSE)
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Partially Confounded Main Effects Allows Estimation of
Some Interactions by Regression
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Jones and Nachtsheim(2011) Propose a Forward Stepwise
Regression Algorithm Guided by Effect Heredity

1 Model matrix includes main effects and two-factor interactions

2 When an interaction enters as the next term in the model,
main effects involved in that interaction are included to
preserve effect heredity
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istep, fstep, bstep Functions in daewr Package Perform
this Algorithm - FG interaction first term entered

> des<-castf[ , c(1:7)]
> y<-castf[ ,12]
> library(daewr)
> trm<-ihstep(y,des)

Call:
lm(formula = y ~ (.), data = d1)

Residuals:
Min       1Q   Median       3Q      Max 

-0.49700 -0.07758  0.02650  0.07867  0.44500 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  5.73025    0.07260  78.930  7.4e-13 ***
F            0.45758    0.07260   6.303 0.000232 ***
G            0.09158    0.07260   1.261 0.242669    
F.G         -0.45875    0.07260  -6.319 0.000228 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2515 on 8 degrees of freedom
Multiple R-squared:  0.9104,    Adjusted R-squared:  0.8767 
F-statistic: 27.08 on 3 and 8 DF,  p-value: 0.0001531
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This Interaction was Detected with Forward Stepwise
Regression
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Alternative to Plackett-Burman when 16 Runs Needed

> library(daewr)
> ascr <-Altscreen(nfac = 6, randomize = FALSE)
> head(ascr)

A  B  C  D  E  F
1  1  1  1  1  1  1
2  1  1 -1 -1 -1 -1
3 -1 -1  1  1 -1 -1
4 -1 -1 -1 -1  1  1
5  1  1  1 -1  1 -1
6  1  1 -1  1 -1  1

Jones and Montgomery (2010) have proposed alternate 16‐run screening designs 
for 6, 7, and 8 factors
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Alternative to Plackett-Burman when 16 Runs Needed

> library(daewr)
> MR8 <- ModelRobust('MR8m5g2', randomize = FALSE)
> head(MR8)

A  B  C  D  E
1 -1  1  1  1 -1
2 -1 -1 -1 -1 -1
3 -1  1 -1 -1  1
4  1  1  1  1  1
5  1  1 -1  1 -1
6 -1 -1 -1  1  1

Li and Nachtsheim (2000) also developed 8‐, 12‐, and 16‐run model robust 
screening designs.
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Main Effects Partially Confounded with Two-Factor
Interactions in These Designs
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Part VI

Experimenting to Find Optima
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Outline of Part VI

6 Experimenting to Find Optima
Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Models
Non-standard Designs
Fitting the Response Surface Model
Determining Optimum Conditions
Split-Plot Response Surface Designs
Screening to Optimization
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Response Surface Methods–A Package of Statistical
Design and Analysis Tools

1 Design and collection of data to fit an equation to
approximate the relationship between factors and responses

2 Regression analysis to fit a model to describe the data

3 Examination of the fitted relationship through graphical and
numerical techniques
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Power Series Models to Approximate Relationships
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Second Order Taylor Series Expansion
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Results – The General Quadratic Model
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Possible Quadratic Surfaces
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Quadratic Models as Approximations
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Matrix Representation of the Quadratic Model

Quadratic Model
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Design Consideration for the Linear Model

Linear Model

,




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Design Consideration for the Quadratic Model

Goal is to equalize the variance of a predicted response over
the region of interest

Rotatable Design–variance of a predicted value is only a
function of the distance from design center

Uniform Precision Design–variance of predicted value is near
equal within radius of one in coded factor units

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Optimization

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Models
Non-standard Designs
Fitting the Response Surface Model
Determining Optimum Conditions
Split-Plot Response Surface Designs
Screening to Optimization

Central Composite Designs
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UP Property of Central Composite Designs

run  x1 x2

1   -1     -1 
2    1     -1
3   -1      1
4    1      1
5    0      0
6   -α 0
7    α 0
8    0     -α
9    0      α

Factorial Portion

Center Points

Axial Portion

Central Composite Design
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Variance Dispersion Graph Shows UP Characteristic
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> library(daewr)
> data(cement)
> des<-cement[, 2:4]
> library(Vdgraph)
> Vdgraph(des)
number of design points= 20 
number of factors= 3 

Radius   Maximum   Minimum   Average
[1,] 0.00000000  3.326805  3.326805  3.326805
[2,] 0.08660254  3.320828  3.320828  3.320828
[3,] 0.17320508  3.303837  3.303837  3.303837
[4,] 0.25980762  3.278640  3.278640  3.278640
[5,] 0.34641016  3.249923  3.249923  3.249923
[6,] 0.43301270  3.224241  3.224241  3.224241
[7,] 0.51961524  3.210026  3.210026  3.210026
[8,] 0.60621778  3.217583  3.217583  3.217583
[9,] 0.69282032  3.259089  3.259089  3.259089
[10,] 0.77942286  3.348596  3.348596  3.348596
[11,] 0.86602540  3.502029  3.502029  3.502029
[12,] 0.95262794  3.737186  3.737186  3.737186
[13,] 1.03923048  4.073740  4.073740  4.073740
[14,] 1.12583302  4.533236  4.533236  4.533236
[15,] 1.21243557  5.139093  5.139093  5.139093
[16,] 1.29903811  5.916603  5.916603  5.916603
[17,] 1.38564065  6.892934  6.892934  6.892934
[18,] 1.47224319  8.097125  8.097125  8.097125
[19,] 1.55884573  9.560089  9.560089  9.560089
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Creating a Central Composite Design in R

> library(rsm)
> rotd <- ccd(3, n0 = c(4,2), alpha = "rotatable", randomize = FALSE)
> rotd

run.order std.order x1.as.is  x2.as.is  x3.as.is Block
1          1         1 -1.000000 -1.000000 -1.000000     1
2          2         2  1.000000 -1.000000 -1.000000     1
3          3         3 -1.000000  1.000000 -1.000000     1
4          4         4  1.000000  1.000000 -1.000000     1
5          5         5 -1.000000 -1.000000  1.000000     1
6          6         6  1.000000 -1.000000  1.000000     1
7          7         7 -1.000000  1.000000  1.000000     1
8          8         8  1.000000  1.000000  1.000000     1
9          9         9  0.000000  0.000000  0.000000     1
10        10        10  0.000000  0.000000  0.000000     1
11        11        11  0.000000  0.000000  0.000000     1
12        12        12  0.000000  0.000000  0.000000     1
13         1         1 -1.681793  0.000000  0.000000     2
14         2         2  1.681793  0.000000  0.000000     2
15         3         3  0.000000 -1.681793  0.000000     2
16         4         4  0.000000  1.681793  0.000000     2
17         5         5  0.000000  0.000000 -1.681793     2
18         6         6  0.000000  0.000000  1.681793     2
19         7         7  0.000000  0.000000  0.000000     2
20         8         8  0.000000  0.000000  0.000000     2
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Creating a Central Composite Design in R

> library(rsm)
> ccd.up<-ccd(y~x1+x2+x3,n0=c(4,2),alph="rotatable",coding=list(x1~(Temp-150)/10,
+ x2~(Press-50)/5,x3~(Rate-4)/1),randomize=FALSE)
> head(ccd.up)
run.order std.order Temp Press Rate  y Block

1         1         1  140    45    3 NA     1
2         2         2  160    45    3 NA     1
3         3         3  140    55    3 NA     1
4         4         4  160    55    3 NA     1
5         5         5  140    45    5 NA     1
6         6         6  160    45    5 NA     1

Data are stored in coded form using these coding formulas ...
x1 ~ (Temp - 150)/10
x2 ~ (Press - 50)/5
x3 ~ (Rate - 4)/1
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Creating a Box-Behnken Design in R

> # create design with rsm
> library(rsm)
> bbd3 <- bbd(3,randomize=FALSE,n0=3)
> library(Vdgraph)
> Vdgraph(bbd3[ , 3:5])
number of design points= 15 
number of factors= 3 

Radius   Maximum   Minimum   Average
[1,] 0.00000000  5.000000  5.000000  5.000000
[2,] 0.08660254  4.984477  4.984445  4.984458
[3,] 0.17320508  4.939125  4.938625  4.938825
[4,] 0.25980762  4.867602  4.865070  4.866083
[5,] 0.34641016  4.776000  4.768000  4.771200
[6,] 0.43301270  4.672852  4.653320  4.661133
[7,] 0.51961524  4.569125  4.528625  4.544825
[8,] 0.60621778  4.478227  4.403195  4.433208
[9,] 0.69282032  4.416000  4.288000  4.339200
[10,] 0.77942286  4.400727  4.195695  4.277708
[11,] 0.86602540  4.453125  4.140625  4.265625
[12,] 0.95262794  4.596352  4.138820  4.321833
[13,] 1.03923048  4.856000  4.208000  4.467200
[14,] 1.12583302  5.260109  4.367570  4.724583
[15,] 1.21243557  5.839134  4.638625  5.118825
[16,] 1.29903811  6.625977  5.043945  5.676758
[17,] 1.38564065  7.656000  5.608000  6.427200
[18,] 1.47224319  8.966977  6.356945  7.400958
[19,] 1.55884573 10.599125  7.318625  8.630825
[20,] 1.64544827 12.595102  8.522570 10.151583
[21,] 1.73205081 15.000000 10.000000 12.000000

0.0 0.5 1.0 1.5

0
5

10
15

Variance Dispersion Graph

Radius

S
ca

le
d 

Va
ria

nc
e

Max
Min
Avg

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Optimization

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Models
Non-standard Designs
Fitting the Response Surface Model
Determining Optimum Conditions
Split-Plot Response Surface Designs
Screening to Optimization

Small Composite Designs
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Minimal Run Response Surface Designs Available in R
package Vdgraph
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Comparing Two Designs with Vdgraph

> library(rsm)
> ccd.up<-ccd(y~x1+x2+x3,n0=c(4,2),alph="rotatable",coding=list(x1~(Temp-150)/10,
+ x2~(Press-50)/5,x3~(Rate-4)/1),randomize=FALSE)
> head(ccd.up)
run.order std.order Temp Press Rate  y Block

1         1         1  140    45    3 NA     1
2         2         2  160    45    3 NA     1
3         3         3  140    55    3 NA     1
4         4         4  160    55    3 NA     1
5         5         5  140    45    5 NA     1
6         6         6  160    45    5 NA     1

Data are stored in coded form using these coding formulas ...
x1 ~ (Temp - 150)/10
x2 ~ (Press - 50)/5
x3 ~ (Rate - 4)/1
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Comparing Two Designs with Vdgraph

> library(Vdgraph)
> data(D310)
> D310

x1     x2      x3
1   0.0000  0.000  1.2906
2   0.0000  0.000 -0.1360
3  -1.0000 -1.000  0.6386
4   1.0000 -1.000  0.6386
5  -1.0000  1.000  0.6386
6   1.0000  1.000  0.6386
7   1.7636  0.000 -0.9273
8  -1.7636  0.000 -0.9273
9   0.0000  1.736 -0.9273
10 0.0000 -1.736 -0.9273
> des<-transform(D310,Temp=10*x1+150, Press=5*x2+50,Rate=x3+4)
> des

x1     x2      x3    Temp Press   Rate
1   0.0000  0.000  1.2906 150.000 50.00 5.2906
2   0.0000  0.000 -0.1360 150.000 50.00 3.8640
3  -1.0000 -1.000  0.6386 140.000 45.00 4.6386
4   1.0000 -1.000  0.6386 160.000 45.00 4.6386
5  -1.0000  1.000  0.6386 140.000 55.00 4.6386
6   1.0000  1.000  0.6386 160.000 55.00 4.6386
7   1.7636  0.000 -0.9273 167.636 50.00 3.0727
8  -1.7636  0.000 -0.9273 132.364 50.00 3.0727
9   0.0000  1.736 -0.9273 150.000 58.68 3.0727
10  0.0000 -1.736 -0.9273 150.000 41.32 3.0727
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Comparing Two Designs with Vdgraph

> Compare2Vdg(des[, 4:6],ccd.up[, 3:5],"D310","CCD.UP")
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Standard Designs Inappropriate in Some Situations

1. Region of experimentation is irregularly shaped

2. Not all combinations of factor levels are feasible

3. There is a nonstandard linear or nonlinear model
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Irregular Design Regions

Example 1 – Irregularly shaped region
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Finite Number of Possible Design Points

Example 2 – Finite number 
of candidate points

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Optimization

Introduction
The Quadratic Response Surface Model
Design Criteria
Standard Designs for Second Order Models
Non-standard Designs
Fitting the Response Surface Model
Determining Optimum Conditions
Split-Plot Response Surface Designs
Screening to Optimization

Create the Design with optFederov function in AlgDesign

> library(daewr)
> data(qsar)
> library(AlgDesign)
> desgn1<-optFederov(~quad(.),data=qsar,nTrials=15,center=TRUE, 
+                    criterion="D",nRepeats=40)
> desgn2<-optFederov(~quad(.),data=qsar,nTrials=15,center=TRUE, 
+                    criterion="I",nRepeats=40)
> desgn2$design

Compound      HE    DMz S0K
1         1 -12.221 -0.162  64.138
4         4 -14.893  1.035  96.053
9         9 -11.813  1.219  77.020
12       12 -14.460  2.266 109.535
13       13  -8.519 -0.560  71.949
14       14 -10.287 -0.675  96.600
16       16 -11.167  0.418 104.047
19       19 -14.491 -0.561  88.547
22       22 -13.121 -1.692 101.978
28       28 -12.637 -2.762 112.492
29       29 -12.118 -2.994  81.106
32       32 -14.804 -3.780 113.856
33       33  -9.209 -0.423  74.871
34       34 -10.970 -0.302  99.603
36       36 -11.868 -1.322 107.010
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Compare the D-Optimal and I-Optimal Designs for the
Quadratic Model

> library(Vdgraph)
> Compare2FDS(desgn1$design, desgn2$design, "D-optimal", "I-optimal", mod=2)
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Known Non-Linear Model

Example 3 – Nonlinear model
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Design Strategy

The strategy  is to  create a  grid of  candidates in  the  independent  variable x,  calculate  
the values of each  of  the four partial derivatives using  initial guesses  of  the parameter 
values at each candidate point, and then use the optFederov function in the AlgDesign
package to select a D-optimal subset of the grid.
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Create the Design in R

> k1 <- .15; k2 <- .72; gamma0 <- 2.65; t0 <- 0.41
> x <- c(seq(1:25))
> dfdk1 <- c(rep(0, 25))
> dfdk2 <- c(rep(0, 25))
> dfdgamma0 <- c(rep(0, 25))
> dfdt0 <- c(rep(0, 25))
> for (i in 1:25) {
+   dfdk1[i] <- -1 * gamma0 * exp(-k1 * (x[i] - t0)) *(x[i] - t0)
+   dfdk2[i] <-gamma0 * exp(-k2 * (x[i] - t0)) * (x[i] - t0)
+   dfdgamma0[i] <- exp(-k1 * (x[i] - t0)) - exp( -k2 * ( x[i] - t0))
+   dfdt0[i] <- gamma0 * exp(-k1 * (x[i] - t0)) * k1 - gamma0 * 
+     exp(-k2 * (x[i] - t0)) * k2; }
> grid <- data.frame(x, dfdk1, dfdk2, dfdgamma0, dfdt0)
> library(AlgDesign)
> desgn2<-optFederov(~-1+dfdk1+dfdk2+dfdgamma0+dfdt0,data=grid,nTrials=4,center=TRUE, 
+ criterion="D",nRepeats=20)
> desgn2$design

x     dfdk1        dfdk2  dfdgamma0        dfdt0
1   1 -1.431076 1.022374e+00 0.26140256 -0.883809267
2   2 -3.319432 1.341105e+00 0.46952112 -0.294138728
5   5 -6.110079 4.464802e-01 0.46562245  0.129639675
25 25 -1.629706 1.333237e-06 0.02500947  0.009941233
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Central Composite Design–Cement Grout
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Central Composite Design–Cement Grout

> library(daewr)
> data(cement)
> cement

Block    WatCem BlackL SNF     y
C1.1      1 0.3300000 0.12000000 0.08000000 109.5
C1.2      1 0.3500000 0.12000000 0.08000000 117.0
C1.3      1 0.3300000 0.18000000 0.08000000 110.5
C1.4      1 0.3500000 0.18000000 0.08000000 121.0
C1.5      1 0.3300000 0.12000000 0.12000000 120.0
C1.6      1 0.3500000 0.12000000 0.12000000 130.0
C1.7      1 0.3300000 0.18000000 0.12000000 124.0
C1.8      1 0.3500000 0.18000000 0.12000000 132.0
C1.9      1 0.3400000 0.15000000 0.10000000 117.0
C1.10     1 0.3400000 0.15000000 0.10000000 117.0
C1.11     1 0.3400000 0.15000000 0.10000000 115.0
S2.1      2 0.3231821 0.15000000 0.10000000 109.5
S2.2      2 0.3568179 0.15000000 0.10000000 132.0
S2.3      2 0.3400000 0.09954622 0.10000000 120.0
S2.4      2 0.3400000 0.20045378 0.10000000 121.0
S2.5      2 0.3400000 0.15000000 0.06636414 115.0
S2.6      2 0.3400000 0.15000000 0.13363586 127.0
S2.7      2 0.3400000 0.15000000 0.10000000 116.0
S2.8      2 0.3400000 0.15000000 0.10000000 117.0
S2.9      2 0.3400000 0.15000000 0.10000000 117.0

Data are stored in coded form using these coding formulas ...
x1 ~ (WatCem - 0.34)/0.01
x2 ~ (BlackL - 0.15)/0.03
x3 ~ (SNF - 0.1)/0.02

Factorial plus
centerpoints

Axial points 
plus centerpoints
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Fit Linear Model–Block 1

> library(rsm)
> grout.lin <- rsm(y ~ SO(x1, x2, x3),data = cement, subset = (Block == 1))
Warning message:
In rsm(y ~ SO(x1, x2, x3), data = cement, subset = (Block == 1)) :
Some coefficients are aliased - cannot use 'rsm' methods.
Returning an 'lm' object.

> anova(grout.lin)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value   Pr(>F)   

FO(x1, x2, x3)   3 465.13 155.042 80.3094 0.002307 **
TWI(x1, x2, x3)  3   0.25   0.083  0.0432 0.985889   
PQ(x1, x2, x3)   1  37.88  37.879 19.6207 0.021377 * 
Residuals        3   5.79   1.931                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> 
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Fit Quadratic Model–All Data

> library(daewr)
> data(cement)
> grout.quad <- rsm(y ~ Block + SO(x1,x2,x3), data = cement)
> summary(grout.quad)

Call:
rsm(formula = y ~ Block + SO(x1, x2, x3), data = cement)

Estimate  Std. Error  t value  Pr(>|t|)    
(Intercept)  1.1628e+02  1.0691e+00 108.7658 2.383e-15 ***
Block2       4.4393e-01  1.0203e+00   0.4351   0.67375    
x1           5.4068e+00  6.1057e-01   8.8553 9.746e-06 ***
x2           9.2860e-01  6.1057e-01   1.5209   0.16262    
x3           4.9925e+00  6.1057e-01   8.1767 1.858e-05 ***
x1:x2        1.2500e-01  7.9775e-01   0.1567   0.87895    
x1:x3       -1.3443e-14  7.9775e-01   0.0000   1.00000    
x2:x3        1.2500e-01  7.9775e-01   0.1567   0.87895    
x1^2         1.4135e+00  5.9582e-01   2.3723   0.04175 *  
x2^2         1.3251e+00  5.9582e-01   2.2240   0.05322 .  
x3^2         1.5019e+00  5.9582e-01   2.5207   0.03273 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Multiple R-squared:  0.9473,    Adjusted R-squared:  0.8887 
F-statistic: 16.17 on 10 and 9 DF,  p-value: 0.0001414
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Fit Quadratic Model–All Data

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value    Pr(>F)

Block            1   0.00   0.003  0.0006   0.98068
FO(x1, x2, x3)   3 751.41 250.471 49.1962 6.607e-06
TWI(x1, x2, x3)  3   0.25   0.083  0.0164   0.99693
PQ(x1, x2, x3)   3  71.45  23.817  4.6779   0.03106
Residuals        9  45.82   5.091                  
Lack of fit      5  42.49   8.498 10.1972   0.02149
Pure error       4   3.33   0.833                  
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Contour Plots of Fitted Surface

> library(rsm)
> contour(grout.quad, ~ x1+x2+x3)
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Perspective Plots of Fitted Surface

> par(mfrow=c(1,3))
> persp(grout.quad, ~ x1+x2+x3, zlab="Work", contours=list(z="bottom"))
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Cannonical Analysis

Stationary point

Maximum?   Minimum?  or Saddlepoint?
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Cannonical Analysis

Stationary point of response surface:
x1         x2         x3 

-1.9045158 -0.1825251 -1.6544845 

Stationary point in original units:
WatCem BlackL SNF 

0.32095484 0.14452425 0.06691031 

Eigenanalysis:
$values
[1] 1.525478 1.436349 1.278634

$vectors
[,1]       [,2]       [,3]

x1 0.1934409  0.8924556  0.4075580
x2 0.3466186  0.3264506 -0.8793666
x3 0.9178432 -0.3113726  0.2461928
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Ridge Analysis

1. Choose μ, solve for x
2. Find R2 = x'x

To find maximum on a radius choose μ > largest eigenvalue of B
To find minimum on radius choose μ < smallest eigenvalue of B
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Ridge Analysis
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Calculations with rsm package

> ridge<-steepest(grout.quad, dist=seq(0, 1.7, by=.1),descent=FALSE)
Path of steepest ascent from ridge analysis:
> ridge

dist x1    x2    x3 |  WatCem BlackL SNF |    yhat
1   0.0 0.000 0.000 0.000 | 0.34000 0.15000 0.10000 | 116.280
2   0.1 0.073 0.013 0.067 | 0.34073 0.15039 0.10134 | 117.036
3   0.2 0.145 0.026 0.135 | 0.34145 0.15078 0.10270 | 117.821
4   0.3 0.218 0.039 0.203 | 0.34218 0.15117 0.10406 | 118.641
5   0.4 0.290 0.053 0.270 | 0.34290 0.15159 0.10540 | 119.481
6   0.5 0.362 0.067 0.338 | 0.34362 0.15201 0.10676 | 120.355
7   0.6 0.434 0.082 0.406 | 0.34434 0.15246 0.10812 | 121.261
8   0.7 0.505 0.096 0.475 | 0.34505 0.15288 0.10950 | 122.194
9   0.8 0.577 0.112 0.543 | 0.34577 0.15336 0.11086 | 123.160
10  0.9 0.648 0.127 0.611 | 0.34648 0.15381 0.11222 | 124.147
11  1.0 0.719 0.143 0.680 | 0.34719 0.15429 0.11360 | 125.172
12  1.1 0.790 0.159 0.749 | 0.34790 0.15477 0.11498 | 126.227
13  1.2 0.861 0.176 0.818 | 0.34861 0.15528 0.11636 | 127.313
14  1.3 0.931 0.192 0.887 | 0.34931 0.15576 0.11774 | 128.419
15  1.4 1.001 0.209 0.956 | 0.35001 0.15627 0.11912 | 129.557
16  1.5 1.071 0.227 1.025 | 0.35071 0.15681 0.12050 | 130.725
17  1.6 1.141 0.244 1.095 | 0.35141 0.15732 0.12190 | 131.930
18  1.7 1.211 0.262 1.164 | 0.35211 0.15786 0.12328 | 133.158
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Plotting the Ridge Trace with R

> par (mfrow=c(2,1))
> leg.txt<-c("W/C","Rad","SNF")
> plot(ridge$dist,ridge$yhat, type="l",xlab="radius",ylab="Max. Predicted")
> plot(ridge$dist,seq(.10,.355,by=.015), type="n", xlab="radius", ylab="Factors")
> lines(ridge$dist,ridge$WatCem,lty=1)
> lines(ridge$dist,ridge$BlackL,lty=2)
> lines(ridge$dist,ridge$SNF,lty=3)
> legend(1.1,.31,leg.txt,lty=c(1,2,3))
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Split-Plot Response Surface Designs

whole plot factor is constant within blocks

replicate blocks 
with the same setting
for the whole plot 
factor allow estimation 
of σw2
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Fitting the Model with lme4 package

> library(lme4)
Loading required package: Matrix
Loading required package: Rcpp
> library(daewr)
from ‘package:lme4’:

cake
> data(cake)
> cake

Ovenrun x1 x2   y x1sq x2sq
1        1 -1 -1 2.7    1    1
2        1 -1  1 2.5    1    1
3        1 -1  0 2.7    1    0
4        2  1 -1 2.9    1    1
5        2  1  1 1.3    1    1
6        2  1  0 2.2    1    0
7        3  0 -1 3.7    0    1
8        3  0  1 2.9    0    1
9        4  0  0 2.9    0    0
10       4  0  0 2.8    0    0
11       4  0  0 2.9    0    0
> mmod <- lmer(y ~ x1 +x2 +x1:x2 +x1sq + x2sq +(1|Ovenrun), data=cake)
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Differences in REML and Least Squares Estimates

Subplot
factor

(rsm function) (lmer function)
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Estimation Equivalent Split-Plot RS Design (EESPRS)

(rsm function) (lmer function)

LS̂ REML̂

LS̂ REML̂ ifEESPRS
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Jones and Goos(2012) D-efficient (EESPRS)
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Creating a Design with daewr package

> library(daewr)
> EEw2s3()

Catalog of D-efficient Estimation 
Equivalent RS 
Designs for (2 wp factors and  3 sp

factors)   

Jones and Goos, JQT(2012) pp. 363-374 

Design Name whole plots sub-plots/whole 
plot  
----------------------------------------
EE21R7WP       7                   3          
EE24R8WP       8                   3          
EE28R7WP       7                   4          
EE32R8WP       8                   4          
EE35R7WP       7                   5          
EE40R8WP       8                   5          
EE42R7WP       7                   6          
EE48R8WP       8                   6          

==> to retrieve a design type 
EE2w3s('EE21R7WP') etc. 

> EEw2s3('EE21R7WP')
WP w1 w2 s1 s2 s3

1   1  1  1 -1 -1  1
2   1  1  1  1 -1 -1
3   1  1  1 -1  1 -1
4   2  0  1  0  1 -1
5   2  0  1  1 -1  1
6   2  0  1 -1  0  0
7   3 -1  0 -1  1  0
8   3 -1  0  1 -1 -1
9   3 -1  0 -1 -1  1
10  4  1 -1  1 -1  1
11  4  1 -1 -1  1  1
12  4  1 -1  1  1 -1
13  5 -1  1 -1 -1 -1
14  5 -1  1  1  1  0
15  5 -1  1 -1  1  1
16  6  1  0  0  0  1
17  6  1  0  1  1  1
18  6  1  0 -1 -1 -1
19  7 -1 -1  0 -1  0
20  7 -1 -1 -1  0 -1
21  7 -1 -1  1  1  1
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One-Step Screening to Optimization

Preliminary        Screening              Effect                      Optimization
Exploration         Factors                  Estimation

Definitive Screening Design

Jones and Nachtsheim(2011, 2013)
3-level designs
2k+1 runs for k factors
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Creating a Definitive Screening Design with daewr

>library(daewr)
> DefScreen(8)

A  B  C  D  E  F  G  H
1   0 -1  1  1 -1  1  1  1
2   0  1 -1 -1  1 -1 -1 -1
3  -1  0 -1  1  1  1  1 -1
4   1  0  1 -1 -1 -1 -1  1
5  -1 -1  0  1  1 -1 -1  1
6   1  1  0 -1 -1  1  1 -1
7   1 -1  1  0  1  1 -1 -1
8  -1  1 -1  0 -1 -1  1  1
9  -1 -1  1 -1  0 -1  1 -1
10  1  1 -1  1  0  1 -1  1
11  1 -1 -1 -1  1  0  1  1
12 -1  1  1  1 -1  0 -1 -1
13 -1  1  1 -1  1  1  0  1
14  1 -1 -1  1 -1 -1  0 -1
15  1  1  1  1  1 -1  1  0
16 -1 -1 -1 -1 -1  1 -1  0
17  0  0  0  0  0  0  0  0
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Definitive Screening Designs Are Model Robust
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Example of a Definitive Screening Design
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Analysis using ihstep, fstep in daewr package

> des<-DefScreen(8)
> pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,
+ 8.1,5.35)
> trm<-ihstep(pd,des)

Call:
lm(formula = y ~ (.), data = d1)

Residuals:
Min      1Q  Median      3Q     Max 

-5.0201 -0.8301  0.0814  1.0299  3.6799 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   7.2194     0.5140  14.045 4.89e-10 ***
F             3.1508     0.5664   5.563 5.43e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.119 on 15 degrees of freedom
Multiple R-squared:  0.6735,    Adjusted R-squared:  0.6518 
F-statistic: 30.94 on 1 and 15 DF,  p-value: 5.429e-05
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Analysis using ihstep, fstep in daewr package

> trm<- fhstep(pd, des, trm)

Call:
lm(formula = y ~ (.), data = d2)

Residuals:
Min      1Q  Median      3Q     Max 

-2.8341 -1.0214 -0.2049  0.5194  2.8378 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   5.0333     1.0345   4.865 0.000309 ***
F             3.1508     0.4789   6.579 1.77e-05 ***
A             0.7664     0.4789   1.600 0.133553    
I.A.2.        2.6545     1.1400   2.328 0.036668 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.792 on 13 degrees of freedom
Multiple R-squared:  0.7977,    Adjusted R-squared:  0.751 
F-statistic: 17.09 on 3 and 13 DF,  p-value: 8.501e-05
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Analysis using ihstep, fstep in daewr package

> trm <-fhstep(pd, des, trm)

Call:
lm(formula = y ~ (.), data = d2)

Residuals:
Min      1Q  Median      3Q     Max 

-2.8480 -0.6376  0.3167  0.6709  2.4451 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)   5.0333     0.9280   5.424 0.000154 ***
F             3.1508     0.4296   7.335 9.04e-06 ***
A             0.7664     0.4296   1.784 0.099715 .  
I.A.2.        2.6545     1.0226   2.596 0.023407 *  
C            -0.8758     0.4296  -2.039 0.064137 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.607 on 12 degrees of freedom
Multiple R-squared:  0.8498,    Adjusted R-squared:  0.7997 
F-statistic: 16.97 on 4 and 12 DF,  p-value: 7.013e-05
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Final Results
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Recommendations for DSD (Jones)

Add two dummy factors to create a design with 2k+4 runs for
k factors

Add replicate center points

Analyze by first fitting the model that includes linear and
quadratic main effects only (this leaves at least 4 df for error)

Eliminate insignificant terms and fit the full quadratic model
to the remaining terms
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