

FTC Short Course - Design and Analysis of Experiments with R

John Lawson

Department of Statistics - BYU

today

通 と く ヨ と く ヨ と

Outlines P. P. P.	Part I: R - An Environment for Data Analysis and Graphics Part II: A Context for Discussing Experimental Designs Part II: Design and Analysis of Two-Level Factorials Part IV: Preliminary Exploration Part V: Design and Analysis of Screening Experiments Part VI: Experimenting to Find Optima
-------------------------	--

Outline of Part I

1 R - An Environment for Data Analysis and Graphics

- Preliminaries
- Program Interface
- R packages
- Code and Data from The Book

Outlines Part II: A Part II: C Part IV: F Part V: D	- An Environment for Data Analysis and Graphics Context for Discussing Experimental Designs Design and Analysis of Two-Level Factorials Preliminary Exploration esign and Analysis of Screening Experiments Experimenting to Find Optima
--	---

Outline of Part II

A Context for Discussing Experimental Designs

- Introduction
- Preliminary Exploration
- Screening Factors
- Effect Estimation
- Optimization
- Sequential Experimentation

nd Graphics Designs torials riments
t

Outline of Part III

Oesign and Analysis of Two-Level Factorials

- Two-Level Factorials
- The Justification for Two-Levels
- Creating and Analyzing Two-Level Factorials with R
- Blocking Two-Level Factorials
- Restrictions on Randomization Split-Plot Designs

Outlines

Outline of Part IV

Preliminary Exploration

- Introduction
- One-Factor Designs
- Two-Factor Designs
- Staggered Nested Designs for Multiple Factors
- Graphical Methods to Check Assumptions
- Chemistry Example

Outlines Part I: R - An Environment for Data Analysis and Graphics Part II: A Context for Discussing Experimental Designs Part III: Design and Analysis of Two-Level Factorials Part IV: Preliminary Exploration Part V: Design and Analysis of Screening Experiments Part VI: Experimenting to Find Optima

Outline of Part V

- Design and Analysis of Screening Experiments
 - Introduction
 - Half-Fractions of Two-Level Factorial Designs
 - One-Quarter and Higher Fractions of Two-Level Factorial Designs
 - Criteria for Choosing Generators for Fractional Factorial Designs
 - Augmenting Fractional Factorial Designs to Resolve Confounding
 - Plackett-Burman and Model Robust Screening Designs

伺 ト く ヨ ト く ヨ ト

R - An Environment for Data Analysis and Graphics A Context for Discussing Experimental Designs Design and Analysis of Two-Level Factorials Preliminary Exploration Design and Analysis of Screening Experiments Experimenting to Find Optima	Outlines
--	----------

Outline of Part VI

6 Experimenting to Find Optima

- Introduction
- The Quadratic Response Surface Model
- Design Criteria
- Standard Designs for Second Order Models
- Non-standard Designs
- Fitting the Response Surface Model
- Determining Optimum Conditions
- Split-Plot Response Surface Designs
- Screening to Optimization

Part I

R - An Environment for Data Analysis and Graphics

John Lawson FTC Short Course - Design and Analysis of Experiments with R

- **→** → **→**

Outline of Part I


1 R - An Environment for Data Analysis and Graphics

- Preliminaries
- Program Interface
- R packages
- Code and Data from The Book

- R is the language of choice for a large and growing proportion of people developing new statistical algorithms
- R is available under GNU General Public License for Windows, Mac OS X, and Linux
- R is extendable with user submitted packages
- The Comprehensive R Archive Network (CRAN) makes it easy to benefit from others work, and share your own work and get feedback for improvements
- There are many user written packages available for the Design and Analysis of Experiments

(日) (同) (三) (三)

Websites for Help Getting Started with R

- The R Project for Statistical Computing https://www.r-project.org
- Getting Started with R http://data.princeton.edu/R/
- A Short Tutorial

http://math.usask.ca/~longhai/doc/others/R-tutorial.pdf

• An Introductory pdf Manual can be Obtained Here https://cran.r-project.org/doc/manuals/R-intro.pdf

イロト イポト イラト イラト

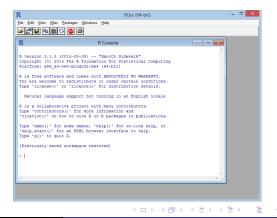
Websites for Help Getting Started with R

- Installing and using R packages http://math.usask.ca/~longhai/software/installrpkg.html
- R Packages for Design an Analysis of Experiments https://cran.r-project.org/web/views/ ExperimentalDesign.html

	R Basics	Preliminaries Program Interface R packages Code and Data from The Book
Objects in R		

During an R session R Creates Entities known as Objects

- Variables
- Arrays of numbers
- Character strings
- Functions
- Data frames and other more complex elements built from earlier components

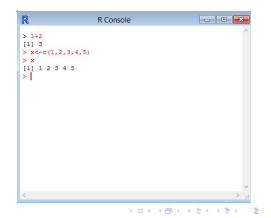

Preliminaries Program Interface R packages Code and Data from The

R. Basics

The R Console

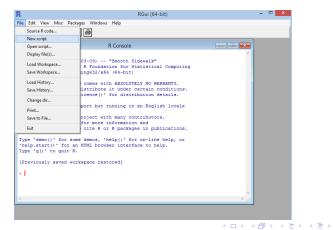
Command line prompt >

Type commands and see text results immediately



Preliminaries Program Interface R packages Code and Data from The Book

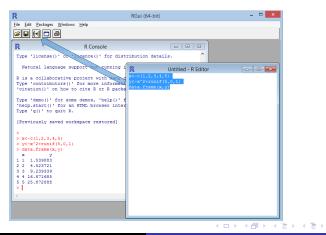
Command line Examples


Expressions and Assignments

Do calculations or make assignments

Preliminaries Program Interface R packages Code and Data from The Boc

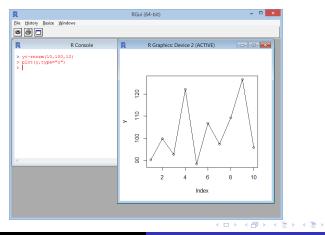
The R Script


R Basics

John Lawson FTC Short Course - Design and Analysis of Experiments with R

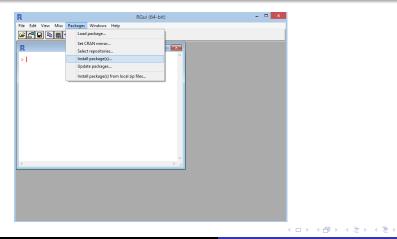
3

Preliminaries Program Interface R packages Code and Data from The Book


Running Commands from an RScript

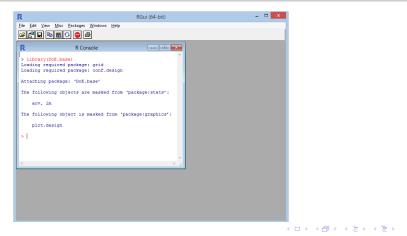
John Lawson FTC Short Course - Design and Analysis of Experiments with R

R Basics R basics R backages Code and Data from The Boo


Making a Plot in R

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminaries Program Interface **R packages** Code and Data from The Book


Installing an R Package

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminaries Program Interface **R packages** Code and Data from The Book

Loading an R Package

3

Preliminaries Program Interface **R packages** Code and Data from The Book

Documentation for an R Package

Package Documents

Document functions and data frames available in the package

		κ.
(C-) (C-) (C-) (C-) (C-) (C-) (C-) (C-)	0-0 0 🖈	
R: Full factorials, orthogona×		
DoE.base-package (DoE.base) R	Documentation	^
Full factorials, orthogonal arrays and base utilities for DoE packs	ages	
Description		
This package creates full factorial designs and designs from orthogonal arrays. In addition, it provides some basic utilities li function for the DoE packages FrF2, DoE wrapper and RemdrPlagin.DoE, and some diagnostics for general orthogonal arrays word implicationalismon).		
Details		
The package is still in an early development phase and not fully mature. Details about combining designs are particularly lil changed in the future (param.design, cross.design). Please contact me, if you have suggestions.	kely to be	
This package designs full factorial experiments (function f.es., dot.14) and experiments based on orthogonal arrays (o.g. and append of function of the same mane given is (o.g. and the same mane given is (o.g. and the option factorsames or for outputting a data frame with attributes). However, S compatibility has not bi deviang this package.	ers and Hastie	
The orthogonal arrays underlying function <u>cs.destagn</u> are mainly taken from Kuhfeld (2009); so far, only the parent arrays implemented, but many more arrays will fallow uson. While the arrays generally guarantee estimability of main effects in a correligibility location interactions, new of them can also be used for designs for which some interactions are to be estimate the design columns are used for experimentation. Optimization for such purposes and check of fitness for such purposes is <i>parental_list_virus_length</i> .	ase there are no d, if only few of	
The package provides class <u>design</u> for use also by packages FrF2, DeE.wrapper and RcmdrPlugin.DeE. Furthermore, it utilities for printing, plotting, summarizing, exporting and combining experimental designs. Package FrF2 relies on functio for full factorial in J-level factor.		
Acknowledgments		
Thanks are due to Peter Theodor Wilrich for various useful suggestions!		
Author(s)		
Ultike Groemping		

3.5

/⊒ > < ∃ >

R packages

Documentation for a Function

Function Document

fact.design function in DoE Base Package

fac.design

Function for full factorial designs

Description

Function for creating full factorial designs with arbitrary numbers of levels, and potentially with blocking

Usage

fac.design(nlevels=NULL, nfactors=NULL, factor.names = NULL, replications=1, repeat.only = FALSE, randomize=TRUE, seed=NULL, blocks=1, block.gen=NULL, block.name="Blocks", bbreps=replications, wbreps=1, block.old.behavior=FALSE)

Arguments

John Lawson

nlevels	number(s) of levels, vector with nfactors entries or single number; can be omitted, if obvious from factor.names number of factors, can be omitted if obvious from entries nlevels or factor.names						
	・ロ・・部・・声・・声・ うくの						
lohn Lawson	FTC Short Course - Design and Analysis of Experiments with R						

Preliminaries Program Interface **R packages** Code and Data from The Book

Example Code in Function Documentation

Function Examples

Examples of fact.design function

Examples

```
## only specify level combination
fac.design(nlevels=c(4,3,3,2))
## design requested via factor.names
fac.design(factor.names=list(one=c("a"."b"."c"), two=c(125,275).
   three=c("old"."new"), four=c(-1,1), five=c("min"."medium"."max")))
## design requested via character factor.names and nlevels
##
     (with a little German lesson for one two three)
fac.design(factor.names=c("eins","zwei","drei"),nlevels=c(2,3,2))
### blocking designs
fac.design(nlevels=c(2.2.3.3.6), blocks=6, seed=12345)
## the same design, now unnecessarily constructed via option block.gen
## preparation: look at the numbers of levels of pseudo factors
## (in this order)
unlist(factorize(c(2,2,3,3,6)))
## or, for more annotation, factorize the unblocked design
factorize(fac.design(nlevels=c(2,2,3,3,6)))
## positions 1 2 5 are 2-level pseudo factors
## positions 3 4 6 are 4-level pseudo factors
```

blocking with highest possible interactions G <- rbind(two=c(1,1,0,0,1,0),three=c(0,0,1,1,0,1)) plan.6blocks <- fac.design(nlevels=c(2,2,3,3,6), blocks=6, block.gen=G, seed=12345) plan.6blocks

(日) (同) (日) (日) (日)

Preliminaries Program Interface **R packages** Code and Data from The Book

Running a function in a loaded package (DoE.Base)

R	R Console	
>	<pre>fac.design(factor.names=list(A=c(10,20),B=c("old","new"),C=c("min","med","max")))</pre>	^
CI	reating full factorial with 12 runs	
	A B C	
1	10 new med	
2	20 old med	
3	10 new min	
4	20 new med	
5	20 new max	
6	10 old max	
7	20 new min	
8		
	10 old med	
10	0 10 old min	
	1 10 new max	
	2 20 old max	
	lass=design, type= full factorial	
>		
		~
<		>

Preliminaries Program Interface **R packages** Code and Data from The Book

User written R packages illustrated in the book

```
AlgDesign, agricolae
BsMD
car crossdes
daewr, DoE.base
effects
FrF2
GAD, gdata, gmodels
leaps, lme4
mixexp, multcomp
nlme
rsm
```

・ロト ・得ト ・ヨト ・ヨト

Preliminaries Program Interface R packages Code and Data from The Book

Website for the book

https://jlawson.byu.edu

Design and Analysis of Experiment Books written by Dr John Lawson

John Lawson FTC Short Course - Design and Analysis of Experiments with R

(日) (同) (三) (三)

Preliminaries Program Interface R packages Code and Data from The Book

Code examples in the book

Code and Data

Code: Web page Data: daewr package

R Code Examples

R.Examples for Chapter 2 R.Examples for Chapter 3 R.Examples for Chapter 4 R.Examples for Chapter 5 R.Examples for Chapter 7 R.Examples for Chapter 7 R.Examples for Chapter 10 R.Examples for Chapter 11 R.Examples for Chapter 11 R.Examples for Chapter 12 R.Examples for Chapter 1

John Lawson FTC Short Course - Design and Analysis of Experiments with R

R Basics R

Preliminaries Program Interface R packages Code and Data from The Book

R Code for Chapter 2

R Examples for Chapter 2

← → C Attps://ilawson.byu.edu/RBOOK/RCode/Chapter2.R 5/2 # Example 1 p. 18 set.seed(7638) f <- factor(rep (c(35, 40, 45), each = 4)) fac <- sample (f, 12) eu <- 1:12 plan <- data.frame (loaf = eu, time = fac) write.csv(plan, file = "Plan.csv", row.names = FALSE) # Example 2 p. 23 bread <- read.csv("Plan.csv")</pre> # Example 3 p. 24 rm(bread) librarv(daewr) mod0 <-lm(height ~ time, data = bread) summary (mod0) # Example 4 p. 25 library(gmodels) fit.contrast (mod0, "time", c(1, -1, 0))

(日) (同) (日) (日) (日)

Strategy

Part II

A Context for Discussing Experimental Designs

John Lawson FTC Short Course - Design and Analysis of Experiments with R

- **→** → **→**

Outline of Part II

2 A Context for Discussing Experimental Designs

- Introduction
- Preliminary Exploration
- Screening Factors
- Effect Estimation
- Optimization
- Sequential Experimentation

Strategy	Introduction Preliminary Exploration Screening Factors Effect Estimation Optimization Sequential Experimentation
----------	---

Strategy for Experimentation

Present ↓				Goal ↓		
	0%		Knowledge	•	100%	
Objective:	Preliminary Exploration	Screening Factors	Effect Estimation	Optimization	Mechanistic Modeling	
No. of Factors		5 - 20	3 - 6	2 - 4	1 - 5	
Purpose:	Identify Sources of Variability	Identify Important Factors	Estimate Factor Effects + Interactions	Fit Empirical Model Interpolate	Estimate Parameters of Theory Extrapolate	

R.D. Snee "Raise Your Batting Average" *Quality Progress* Dec. 2009

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Strategy	Introduction Preliminary Exploration Screening Factors Effect Estimation Optimization Sequential Experimentation
Preliminary Exploration	

- Exploratory experiments to study repeatability of the process
- Identify process steps causing majority of the variability in results
- Identify factors that possibly affect the results

	Strategy	Introduction Preliminary Exploration Screening Factors Effect Estimation Optimization Sequential Experimentation	
Screening			

- Explores a large number of factors
- Objective is to identify smaller subset of most important factors
- Fit linear models to the data

Strategy	Introduction Preliminary Exploration Screening Factors Effect Estimation Optimization Sequential Experimentation	

Effect Estimation

- Explores the relationship between results and important factors
- Goal is to estimate linear effects and interactions and develop a prediction model
- Fit models including linear effects and interactions

	Strategy	Introduction Preliminary Exploration Screening Factors Effect Estimation Optimization Sequential Experimentation	
Optimization			

- Explores the relationship between results and a limited number of quantitative leveled factors
- Goal is to identify optimum operating conditions within the factor ranges studied
- Fit quadratic response surface models

Strategy	Introduction Preliminary Exploration Screening Factors Effect Estimation Optimization Sequential Experimentation
Sequential Experimentation	

- Plan Ahead decide on a series of experiments that may be needed
- Consider All Possible Factors majority of variation is caused by a subset of factors, but which ones?
- Don't Spend All Resources on a Single Experiment

Strategy Sequential Experimentation

Possible Sequences

- Preliminary Exploration Effect Estimation
- Preliminary Exploration Optimization
- Screening Effect Estimation Optimization

イロト イポト イヨト イヨト

Design and Analysis of Two-Level Factorials

Part III

Design and Analysis of Two-Level Factorials

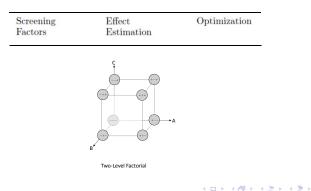
John Lawson FTC Short Course - Design and Analysis of Experiments with R

/⊒ ► < ∃ ►

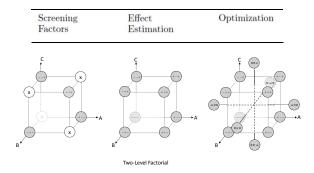
Design and Analysis of Two-Level Factorials

Outline of Part III

Obsign and Analysis of Two-Level Factorials


- Two-Level Factorials
- The Justification for Two-Levels
- Creating and Analyzing Two-Level Factorials with R
- Blocking Two-Level Factorials
- Restrictions on Randomization Split-Plot Designs

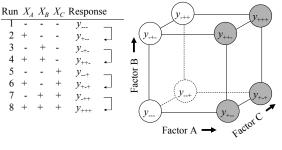
Why start discussion with two-level factorials?


		Present ↓		Goa ↓	al
	0%		Knowledge		100%
Objective:	Preliminary Exploration	Screening Factors	Effect Estimation	Optimization	Mechanistic Modeling
No. of Factors		5 - 20	3 - 6	2 - 4	1 - 5
Purpose:	Identify Sources of Variability	Identify Important Factors	Estimate Factor Effects + Interactions	Fit Empirical Model Interpolate	Estimate Parameters of Theory Extrapolate

< ロ > < 同 > < 回 > < 回 >

Why start discussion with two-level factorials?

Why start discussion with two-level factorials?

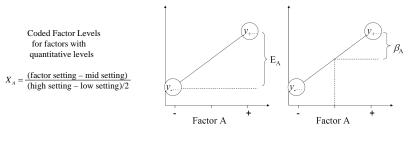

(日)

-

Two-Level Factorials

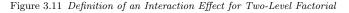
Effect estimation in two-level factorials

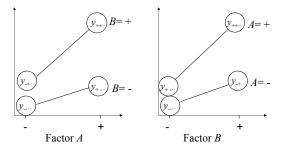
Figure 3.10 Geometric Representation of 2³ Design and Main Effect Calculation



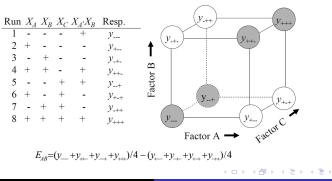
$$E_A = (y_{+-+} + y_{+++} + y_{+-+} + y_{+++})/4 - (y_{--+} + y_{-++} + y_{-++} + y_{-++})/4$$

- ∢ ≣ ▶


Relation between effect and regression coefficient



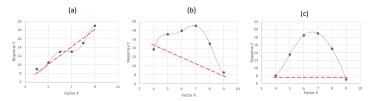
A > 4 3


Definition of interaction effect

Calculation of interaction effect

Figure 3.12 Geometric Representation of 2³ Design and Interaction Effect

э


Number of experiments

Number of Experiments Required for a Full-Factorial

	Number of Levels			
Number of Factors	2	3	4	
2	4	9	16	
3	8	27	64	
4	16	81	256	
5	32	243	1024	

Choice of Levels

- Factors with Qualitative Levels
- Factors with Quantitative Levels

Creating a two-level factorial design with R FrF2

Problem 9 Chapter 3 of "Design and Analysis with R"

9. Nyberg (1999) has shown that silicon nitride (SiNx) grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) is a promising candidate for an antireflection coating (ARC) on commercial crystalline silicon solar cells. Silicon nitride was grown on polished (100)-oriented 4A silicon wafers using a parallel plate Plasma Technology PECVD reactor. The diameter of the electrodes of the PECVD is 24 cm and the diameter of the shower head (through which the gases enter) is 2A. The RF frequency was 13.56 MHz. The thickness of the silicon nitride was one-quarter of the wavelength of light in the nitride, the wavelength being 640 nm. This wavelength is expected to be close to optimal for silicon solar cell purposes. The process gases were ammonia and a mixture of 3% silane in argon. The experiments were carried out according to a 2⁵ factorial design. The results are shown in the table on the next page.

<ロ> <同> <同> < 同> < 同>

Creating a two-level factorial design with R FrF2

Exercise data

	А	в	С	D	E	W1	3/2
	Silane	Total					
	to	Gas					
	Ammonia	Flow					Growth
Exp.	Flow Rate	Rate	Press.	Temp.	Power	Refract.	Rate
No.	Ratio	(sccm)	(mtorr)	(C ²)	(W)	Index	(nm/min)
1	0.1	40	300	300	10	1.92	1.79
2	0.9	-40	300	300	10	3.06	10.1
3	0.1	220	300	300	10	1.96	3.02
- 4	0.9	220	300	300	10	3.33	15
5	0.1	-40	1200	300	10	1.87	19.7
6	0.9	-40	1200	300	10	2.62	11.2
7	0.1	220	1200	300	10	1.97	35.7
8	0.9	220	1200	300	10	2.96	36.2
9	0.1	-40	300	460	10	1.94	2.31
10	0.9	-40	300	460	10	3.53	5.58
11	0.1	220	300	460	10	2.06	2.75
12	0.9	220	300	460	10	3.75	14.5
13	0.1	-40	1200	460	10	1.96	20.7
14	0.9	-40	1200	460	10	3.14	11.7
15	0.1	220	1200	460	10	2.15	31
16	0.9	220	1200	460	10	3.43	39
17	0.1	-40	300	300	60	1.95	3.93
18	0.9	-40	300	300	60	3.16	12.4
19	0.1	220	300	300	60	2.01	6.33
20	0.9	220	300	300	60	3.43	23.7
21	0.1	-40	1200	300	60	1.88	35.3
22	0.9	-40	1200	300	60	2.14	15.1
23	0.1	220	1200	300	60	1.98	57.1
24	0.9	220	1200	300	60	2.81	45.9
25	0.1	-40	300	460	60	1.97	5.27
26	0.9	-40	300	460	60	3.67	12.3
27	0.1	220	300	460	60	2.09	6.39
28	0.9	220	300	460	60	3.73	30.5
29	0.1	-40	1200	460	60	1.98	30.1
30	0.9	-40	1200	460	60	2.99	14.5
31	0.1	220	1200	460	60	2.19	50.3
32	0.9	220	1200	460	60	3.39	47.1
				∢ é	₽ ►	< ≣	•

FTC Short Course - Design and Analysis of Experiments with R

John Lawson

Creating a two-level factorial design with R FrF2

- > library(FrF2)
- > Design.p9 <-FrF2(nruns=32, nfactors=5, blocks=1, ncenter=0, replications=1,
- + randomize=FALSE, factor.names=list(Ratio=c(0.1,0.9),Gas_flow=c(40,60),
- + Pressure=c(300,1200),Temperature=c(300,460), Power=c(10,60)))

creating full factorial with 32 runs \ldots

- > y1<-c(1,92,3.06,1.96,3.33,1.87,2.62,1.97,2.96,1.94,3.53,2.06,3.75,1.96,3.14,2.15, + 3.43,1.95,3.16,2.01,3.43,1.88,2.14,1.98,2.81,1.97,3.67,2.09,3.73,1.98,2.99,2.19, + 3.39)
- > y2<-c(1.79,10.10,3.02,15.00,19.70,11.20,35.70,36.20,2.31,5.58,2.75,14.50,20.70,
- + 11.70,31.00,39.00,3.93,12.40,6.33,23.70,35.30,15.10,57.10,45.90,5.27,12.30,6.39,
- + 30.50,30.10,14.50,50.30,47.10)
- > Design.p9 <- add.response(Design.p9, y1, replace=FALSE)
- > Design.p9 <- add.response(Design.p9, y2, replace=FALSE)

(日)

Creating a two-level factorial design with R FrF2

> print(Design.p9, std.order=TRUE)

	F			,							
	run.no.in.st	d.order:					Temperature		yl	y2	
1		1	1	0.1	40	300	300	10	1.92	1.79	
2		2	2	0.9	40	300	300	10	3.06	10.10	
3		3	3	0.1	60	300	300	10	1.96	3.02	
4		4	4	0.9	60	300	300	10	3.33	15.00	
5		5	5	0.1	40	1200	300	10	1.87	19.70	
6		6	6	0.9	40	1200	300	10	2.62	11.20	
7		7	7	0.1	60	1200	300	10	1.97	35.70	
8		8	8	0.9	60	1200	300	10	2.96	36.20	
9		9	9	0.1	40	300	460	10	1.94	2.31	
1	0	10	10	0.9	40	300	460	10	3.53	5.58	
1	1	11	11	0.1	60	300	460	10	2.06	2.75	
1	2	12	12	0.9	60	300	460	10	3.75	14.50	
1	3	13	13	0.1	40	1200	460	10	1.96	20.70	
1	4	14	14	0.9	40	1200	460	10	3.14	11.70	
1	5	15	15	0.1	60	1200	460	10	2.15	31.00	
1	5	16	16	0.9	60	1200	460	10	3.43	39.00	
1	7	17	17	0.1	40	300	300	60	1.95	3.93	
1	3	18	18	0.9	40	300	300	60	3.16	12.40	
1	Э	19	19	0.1	60	300	300	60	2.01	6.33	
2	D	20	20	0.9	60	300	300	60	3.43	23.70	
2	1	21	21	0.1	40	1200	300	60	1.88	35.30	
2	2	22	22	0.9	40	1200	300	60	2.14	15.10	
3	D	30	30	0.9	40	1200	460	60	2.99	14.50	
3	1	31	31	0.1	60	1200	460	60	2.19	50.30	
3	2	32	32	0.9	60	1200	460	60	3.39	47.10	
N	OTE: columns 1	un.no.im	n.std.o:	rder an	nd run.no	are anno	tation, not ;	part of	E the	data :	frame

>

< ∃ >

Example analysis of a replicated 2³ factorial

	Lev	/els
Factor	—	+
A=Ambient temperature, °C	22	32
B=Voltmeter warmup time, minutes	0.5	5.0
C=Time power is connected, minutes	0.5	5.0
Y=measured voltage, millivolts		

Example analysis of a replicated 2³ factorial

Table	3.6 F	actor	Setting	gs and	Respor	ise for	Voltme	ter Exper	iment
	Fac	tor Le	evels	Cod	ed Fac	ctors			
Run	Α	в	\mathbf{C}	X_A	X_B	X_C	Rep	Order	у
1	22	0.5	0.5	-	-	-	1	5	705
2	32	0.5	0.5	+	-	-	1	14	620
3	22	5.0	0.5	-	+	-	1	15	700
4	32	5.0	0.5	+	+	-	1	1	629
5	22	0.5	5.0	-	-	+	1	8	672
6	32	0.5	5.0	+	-	+	1	12	668
7	22	5.0	5.0	-	+	+	1	10	715
8	32	5.0	5.0	+	+	+	1	9	647
1	22	0.5	0.5	-	-	-	1	4	680
2	32	0.5	0.5	+	-	-	1	7	651
3	22	5.0	0.5	-	+	-	1	2	685
4	32	5.0	0.5	+	+	-	1	3	635
5	22	0.5	5.0	-	-	+	1	11	654
6	32	0.5	5.0	+	-	+	1	16	691
7	22	5.0	5.0	-	+	+	1	6	672
8	32	5.0	5.0	+	+	+	1	13	673

FTC Short Course - Design and Analysis of Experiments with R

A B > A B >

Creating and Analyzing Two-Level Factorials with R

Example analysis of a replicated 2³ factorial

Note

volt is a data frame in daewr package

> library(daewr)

Image: Im

.= >

Example analysis of a replicated 2³ factorial

Code was cut and pasted from R examples for Chapter 2

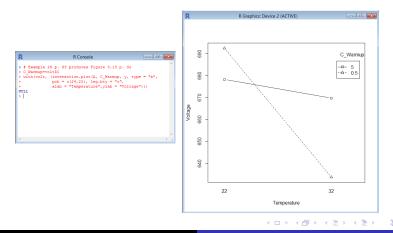
https://jlawson.byu.edu/RBOOK/ RExamples.html

the statement contrast=list(A=contr.FrF2....

Converts actual factor levels for A stored as factors in data frame volt to coded factor level contrasts Al etc. This would not be necessary if the design was Created by R package FrF2

The estimates are the regression coefficients or ½ of the Effects.

```
> library(FrF2)
```


- > modv<-lm(y ~ A*B*C, data=volt, contrast=list(A=contr.FrF2,</pre>
- + B=contr.FrF2, C=contr.FrF2))
- > summary(modv)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	668.5625	4.5178	147.985	4.86e-15	* * *	
A1	-16.8125	4.5178	-3.721	0.00586	* *	
B1	0.9375	4.5178	0.208	0.84079		
C1	5.4375	4.5178	1.204	0.26315		
A1:B1	-6.6875	4.5178	-1.480	0.17707		
A1:C1	12.5625	4.5178	2.781	0.02390	*	
B1:C1	1.8125	4.5178	0.401	0.69878		
A1:B1:C1	-5.8125	4.5178	-1.287	0.23422		
Signif. code	es: 0 '*'	**' 0.001 '*	**' 0.01	'*' 0.05	'.' 0.1	
Residual sta	andard eri	cor: 18.07 d	on 8 degi	rees of fi	reedom	
Multiple R-s	squared:	0.772,	Adjusted	d R-square	ed: 0.5	724
F-statistic	: 3.869 or	n 7 and 8 DI	7, p-vai	Lue: 0.038	35	

< ロ > < 同 > < 回 > < 回 >

Example analysis of a replicated 2³ factorial

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Example analysis of a replicated 2³ factorial

Note

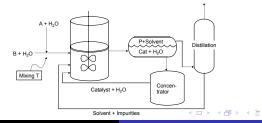
Since the design is orthogonal insignificant terms dropped without refitting to get a prediction equation

$$y = 668.56 - 16.81 \left(\frac{Temp - 27}{5}\right) + 6.27 \left(\frac{CWarm - 2.75}{2.25}\right) \left(\frac{Temp - 27}{5}\right)$$

▲□ ► < □ ► </p>

.

Two-Level Factorials The Justification for Two-Levels Creating and Analyzing Two-Level Factorials with R Blocking Two-Level Factorials Restrictions on Randomization - Split-Plot Designs


Example analysis of an unreplicated 2⁴ design

Symbol Factor Name

- A Excess of Reactant A (over molar amount)
- B Catalyst Concentration
- C Pressure in the Reactor
- D Temperature of the Coated Mixing-T

Figure 3.14 Diagram of a Chemical Process

Product + Tars

John Lawson

FTC Short Course - Design and Analysis of Experiments with R

Example analysis of an unreplicated 2⁴ design

Note

chem is a data frame in daewr package

R R Console	• •
> library(daewr)	^
Attaching package: 'daewr'	
The following objects are masked _by_ '.GlobalEnv':	
EEw2s1, EEw2s2, EEw2s3	
<pre>> data (chem) > chem</pre>	
	~

John Lawson FTC Short Course - Design and Analysis of Experiments with R

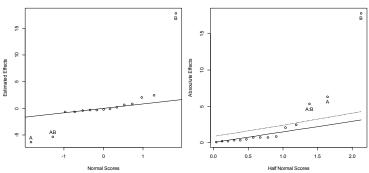
Example analysis of an unreplicated 2⁴ design

> modf <-lm(y ~ A*B*C*D, data = chem)
> summary(modf)

Call: lm(formula = y ~ A * B * C * D, data = chem)

Residuals: ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:

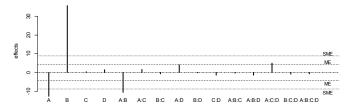

	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	62.3125		NA		NA	NA	
A	-6.3125		NA		NA	NA	
в	17.8125		NA		NA	NA	
c	0.1875		NA		NA	NA	
D	0.6875		NA		NA	NA	
A:B	-5.3125		NA		NA	NA	
A:C	0.8125		NA		NA	NA	
B:C	-0.3125		NA		NA	NA	
A:D	2.0625		NA		NA	NA	
B:D	-0.0625		NA		NA	NA	
C:D	-0.6875		NA		NA	NA	
A:B:C	-0.1875		NA		NA	NA	
A:B:D	-0.6875		NA		NA	NA	
A:C:D	2.4375		NA		NA	NA	
B:C:D	-0.4375		NA		NA	NA	
A:B:C:D	-0.3125		NA		NA	NA	

Residual standard error: NaN on 0 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: NaN F-statistic: NAN on 15 and 0 DF, p-value: NA

(日) (同) (日) (日) (日)

> LGB(coef(modf)[-1], rpt = FALSE)

Example analysis of an unreplicated 2⁴ design

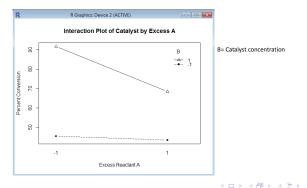

John Lawson FTC Short Course - Design and Analysis of Experiments with R

> fullnormal(coef(modf)[-1],alpha=.025)
Normal Q-Q Plot

Example analysis of an unreplicated 2⁴ design

> LenthPlot(modf, main = "Lenth Plot of Effects")

Lenth Plot of Effects


factors

Example analysis of an unreplicated 2⁴ design

```
> with(chem, (interaction.plot( A, B, y, type = "b", pch = c(18,24),
```

main = "Interaction Plot of Catalyst by Excess A",

xlab = "Excess Reactant A", ylab = "Percent Conversion")))

Example analysis of an unreplicated design with an outlier

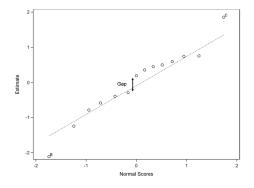
$$E_i = \left(\left(\sum_{\{X_i = +\}} Y_i \right) - \left(\sum_{\{X_i = -\}} Y_i \right) \right) / \left(\frac{n}{2} \right)$$

Daniel (1960) proposed a manual method for detecting and correcting an outlier or atypical value in an unreplicated 2^k design. This method consists of three steps. First, the presence of an outlier is detected by a gap in the center of a normal plot of effects. Second, the outlier is identified by matching the signs of the insignificant effects with the signs of the coded factor levels and interactions of each observation. The third step is to estimate the magnitude of the discrepancy and correct the atypical value.

・ロト ・同ト ・ヨト ・ヨト

Example analysis of an unreplicated design with an outlier

Note


BoxM is a data frame in daewr package taken from Box(1991)

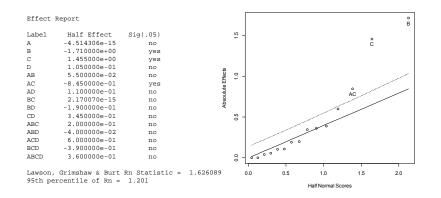
> 1	libı	cary	(da	aewı	c)				
<pre>> data(BoxM)</pre>									
> I	Boxl	4							
	А	в	С	D	У				
1	-1	-1	-1	-1	47.46				
2	1	-1	-1	-1	49.62				
3	-1	1	-1	-1	43.13				
4	1	1	-1	-1	46.31				
5	-1	-1	1	-1	51.47				
б	1	-1	1	-1	48.49				
7	-1	1	1	-1	49.34				
8	1	1	1	-1	46.10				
9	-1	-1	-1	1	46.76				
10	1	-1	-1	1	48.56				
11	-1	1	-1	1	44.83				
12	1	1	-1	1	44.45				
13	-1	-1	1	1	59.15				
14	1	-1	1	1	51.33				
15	-1	1	1	1	47.02				
16	1	1	1	1	47.90				

< E.

Example analysis of an unreplicated design with an outlier

> fullnormal(coef(modB)[-1],alpha=.2)

Example analysis of an unreplicated design with an outlier


> Gaptest(BoxM)

Effect Report

			Corrrecte	d Data Report	
Label	Half Effect	Sig(.05)	Response	Corrected Response	Detect Outlier
A	-0.400	no	47.46	47.46	no
в	-2.110	no	49.62	49.62	no
C	1.855	no	43.13	43.13	no
D	0.505	no	46.31	46.31	no
AB	0.455	no	51.47	51.47	no
AC	-1.245	no	48.49	48.49	no
AD	-0.290	no	49.34	49.34	no
BC	-0.400	no	46.10	46.10	no
BD	-0.590	no	46.76	46.76	no
CD	0.745	no	48.56	48.56	no
ABC	0.600	no	44.83	44.83	no
ABD	0.360	no	44.45	44.45	no
ACD	0.200	no	59.15	52.75	yes
BCD	-0.790	no	51.33	51.33	no
ABCD	0.760	no	47.02	47.02	no
			47.90	47.90	no
Lawson,	Grimshaw & Burt	Rn Statistic = 1			
95th per	centile of Rn =	1.201			
Initial	Outlier Report				

95th percentile of Rn = 1.201 Initial Outlier Report Standardized-Gap = 3.353227 Significant at 50th percentile Final Outlier Report Standardized-Gap = 12.18936 Significant at 99th percentile

Example analysis of an unreplicated design with an outlier

< □ > < 同 > < 回 >

э

Blocking a 2⁴

Dish Soaking Experiment

Experimental Unit:

Response: Number of Clean grid squares

Estern for Distance line Emericant

Factors: A=Water Temperature

C=Soap Brand

D=Soaking Time

Table 1.4 Factors for L	Levels		
Factor	(-)	(+)	
A-Water Temperature	60 Deg F	115 Deg F	
B-Soap Amount	1 tbs	2tbs	
C-Soaking Time	$3 \min$	$5 \min$	
D-Soap Brand	WF	UP	

Blocking a 2⁴

Blocking factor:

Block 1 = W.F., 1:30 4 E.U's per block Block 2 = W.F., 1:00 Block 3 = Prego, 1:30 Confound AC, ABD Block 4 = Prego, 1:00 AC(ABD)=BCD gets confounded

Table 7.5	Blocks for	Dishwashing	Experiment
-----------	------------	-------------	------------

Block	Type Sauce	Microwave Time
1	Store Brand	1 min
2	Premium Brand	$1 \min$
3	Store Brand	1:30 min
4	Premium Brand	1:30 min

- 4 同 ト 4 ヨ ト 4 ヨ ト

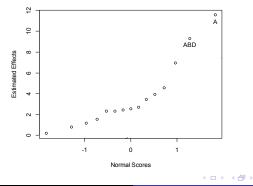
Blocking Two-Level Factorials

Create the design with FrF2

```
> librarv(FrF2)
> Bdish <- FrF2(16, 4, blocks=c("ABD", "BCD"), alias.block.2fis=TRUE, randomize=FALSE)
> Bdish
  run.no run.no.std.rp Blocks
                                 Α
                                    в
                  1.1.1
                              1 -1 -1 -1
       2
                  6.1.2
                                   1 -1
3
       3
                 12.1.3
                 15.1.4
       4
  run.no run.no.std.rp Blocks
                                          D
5
       5
                  3.2.1
                              2 -1 -1
                                       1 -1
                             2 -1
б
       6
                  8.2.2
                                          1
                 10.2.3
                              2
                                   -1 -1
                                          1
8
       ۶
                 13.2.4
                              2
                                    1 - 1 - 1
   run.no run.no.std.rp Blocks
                                           D
9
        9
                   4.3.1
                               3
10
       10
                  7.3.2
                               3 -1
                                        1
                   9.3.3
12
       12
                  14.3.4
                               3
   run.no run.no.std.rp Blocks
                                     B
13
       13
                   2.4.1
14
       14
                  5.4.2
                               4
                                     1 -1 -1
15
       15
                  11.4.3
                               4
                                 1 -1 1 -1
16
       16
                  16.4.4
                              4 1
                                   1 1 1
class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
```

э

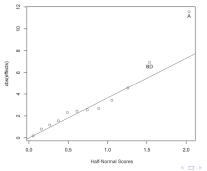
Create the design with FrF2


```
> y<-c(0, 0, 12, 14, 1, 0, 1, 11, 10, 2, 33, 24, 3, 5, 41, 70)
> Bdish<-add.response(Bdish, response=y)</pre>
> Bdish
  run.no run.no.std.rp Blocks
                                 Ά
                                     В
                                              У
                  1.1.1
                              1 -1 -1 -1
2
       2
                  6.1.2
                              1 -1 1 -1
3
       3
                 12.1.3
                                1 -1
4
       4
                 15.1.4
                                             14
  run.no run.no.std.rp Blocks
                                 A
                                    В
                                           D
5
                  3.2.1
                              2 -1
                                   -1
                                              1
6
       6
                  8.2.2
                              2 -1
7
                 10.2.3
                                              1
8
       8
                 13.2.4
                              2
                                          -1 11
   run.no run.no.std.rp Blocks
                                  Α
                                      В
                                               У
9
                   4.3.1
        9
                               3 -1 -1
                                            1 10
10
       10
                   7.3.2
                               3 -1
                                               2
                   9.3.3
                               3
                                    -1 -1
12
       12
                  14.3.4
                               3
                                              24
   run.no run.no.std.rp Blocks
                                   Ά
                                      B
                                               У
                   2.4.1
13
       13
                               4 -1 -1 -1
                                               3
14
       14
                   5.4.2
                                               5
15
       15
                  11.4.3
                                    -1
                                           -1 41
16
       16
                  16.4.4
                               4 1 1
                                         1 1 70
class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of
the data frame
```

< 日 > < 同 > < 三 > < 三 >

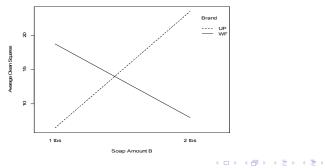
э

Analyze the design ignoring blocks


- > mudu<-lm(y ~ A*B*C*D, data=Bdish)</pre>
- > fullnormal(coef(mudu)[-1],alpha=.1)

Analyze the design accounting for blocks

```
dish <- lm( y ~ Blocks + A * B * C * D, data = Bdish)
effects <- coef(dish)
effects <- effects[5:19]
effects <- effects[5:19]
library(daewr)
halfnorm(effects, names(effects), alpha=.25)</pre>
```



John Lawson

FTC Short Course - Design and Analysis of Experiments with R

э

An unlikely interaction

- > x <- as.numeric(Bdish\$B)</pre>
- > x[x=="1"] <- "1 tbs"
- > x[x=="2"] <- "2 tbs"
- > Brand <- as.numeric(Bdish\$D)</pre>
- > Brand[Brand==1] <- "WF"</pre>
- > Brand[Brand=="2"] <- "UP"</pre>
- > interaction.plot(x, Brand, Bdish\$y, type="l" ,xlab="Soap Amount B",ylab="Average Clean Squares")

э

Criteria for choosing block defining contrasts

Confounding a 2^k in blocks of size 2^q

- 1. Choose k-q block defining contrasts
- 2. Block defining contrasts plus their generalized interactions are confounded with blocks

Example: Confounding a 2⁵ factorial in blocks of size 2²=4 ⇒2⁵/2² = 2³ = 8 blocks, 7 df 5-2 = 3 Choose ABC, CDE, ABCDE as block defining contrasts then the generalized interactions ABDE, DE, AB, and **C** are also confounded with blocks.

To find the best generators and block defining contrasts for a particular design problem is not a simple task. Fortunately, statisticians have provided tables that show choices that are optimal in certain respects. Box et al. (1978) provide tables for block defining contrasts that will result in a minimal number of low-order interactions being confounded with blocks in a blocked 2^k design. Sun et al.(1997) provide an extensive catalog of block defining contrasts for 2^k designs and generators for 2^{k-p} designs along with the corresponding block defining contrasts that will result in best designs with regard to one of several quality criteria such as *estimability* order.

When not specied by the user, the function FrF2 in the R package FrF2 uses the block defining contrasts from Sun et al.'s (1997) catalog to create blocked 2^k designs.

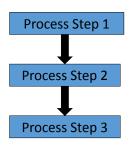
Create design with Default FrF2 block contrasts

```
> Blocked25<-FrF2(32, 5, blocks=8, alias.block.2fis=TRUE, randomize=FALSE)
> summary(Blocked25)
Call:
FrF2(32, 5, blocks = 8, alias.block.2fis = TRUE, randomize = FALSE)
Experimental design of type FrF2.blocked
32 runs
blocked design with 8 blocks of size 4
Factor settings (scale ends):
   ABCDE
1 -1 -1 -1 -1 -1
2 1 1 1 1 1
Design generating information:
Slegend
[1] A=A B=B C=C D=D E=E
S`generators for design itself`
[1] full factorial
$`block generators`
[1] ABCD ACE BCE
no aliasing of main effects or 2fis among experimental factors
Aliased with block main effects:
```

[1] AB CD

(日) (同) (日) (日) (日)

Create design with Default FrF2 block contrasts


The design	n itself:						
run.no :	run.no.std.rp	Blocks	А	в	С	D	Ε
1 1	3.1.1	1 -	1 -	1 -	-1	1 -	-1
2 2	6.1.2	1 -	1 -	1	1 .	-1	1
3 3	28.1.3	1	1	1 -	-1	1	1
4 4	29.1.4	1	1	1	1 .	-1 -	-1
run.no :	run.no.std.rp	Blocks	А	в	С	D	Ε
5 5	9.2.1	2 -	1	1 -	1 .	-1 -	-1
6 6	16.2.2	2 -	-1	1	1	1	1
7 7	18.2.3	2	1 -	1 -	1 .	-1	1
8 8	23.2.4	2	1 -	1	1	1 -	-1
run.no	run.no.std.rp	Blocks	А	В	С	D	E
9 9	10.3.1	3	-1	1	-1	-1	1
10 10	15.3.2	3	-1	1	1	1	-1
11 11	17.3.3	3	1	-1	-1	-1	-1
12 12	24.3.4	3	1	-1	1	1	1
run.no	run.no.std.rp	Blocks	А	В	С	D	E
13 13	4.4.1	4	-1	-1	-1	1	1
14 14	5.4.2	4	-1	-1	1	-1	-1
15 15	27.4.3	4	1	1	-1	1	-1
16 16	30.4.4	4	1			-1	
run.no	run.no.std.rp	Blocks	А	в	С	D	E
17 17	1.5.1	5	-1	-1	-1	-1	-1
18 18	8.5.2		-1		1	1	1
19 19	26.5.3	5	1	1	-1	-1	1
20 20	31.5.4	5	1	1	1	1	-1

class=design, type= FrF2.blocked NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

< 日 > < 同 > < 三 > < 三 >

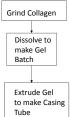
Multiple process steps make complete randomization very time consuming

Process Experiments

- Factor in Earlier Step become Whole Plot Factor
- Factors in Later Steps can be varied within and become subplot factors

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

Design and Analysis of Two-Level Factorials


Restrictions on Randomization - Split-Plot Designs

Example - Process for making sausage casing

from steaming to deep fat frying - and the casing must be able to handle stress

John Lawson FTC Short Course - Design and Analysis of Experiments with R

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test all 4 combinations of C and D in each batch

Sausages can be cooked in many ways from steaming to deep-fat frying, and the casing must be able to handle the stress and temperature changes without bursting. Experiments were run to determine how the combination of levels of two factors A and B in the gel making process, and the combination of levels of two factors C and D in the gel extrusion step affected the bursting strength of the final casing.

Table 8.4 First Four Batches for Sausage-Casing Experiment

Gel			\mathbf{C}	-	+	-	+
Batch	Α	В	D	-	-	+	+
1	-	-		2.07	2.07	2.10	2.12
2	+	-		2.02	1.98	2.00	1.95
3	-	+		2.09	2.05	2.08	2.05
4	+	$^+$		1.98	1.96	1.97	1.97

< 日 > < 同 > < 三 > < 三 >

Repeat with another lot of raw material (collagen)

Table 8.5 Second Block of Four Batches for Sausage-Casing Experiment

Gel			\mathbf{C}	-	+	-	+
Batch	Α	В	D	-	-	+	+
1	-	-		2.08	2.05	2.07	2.05
2	+	-		2.03	1.97	1.99	1.97
3	-	+		2.05	2.02	2.02	2.01
4	+	+		2.01	2.01	1.99	1.97

- 4 同 2 4 日 2 4 日 2

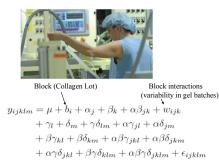
Whole plot model is like a blocked two-factor factorial

$$y_{ijk} = \mu + b_i + \alpha_j + \beta_k + \alpha\beta_{jk} + w_{ijk}$$

 \boldsymbol{b}_i is the random block or collagen shipment effect

 α_j is the fixed effect of factor A.

 β_k is the fixed effect of factor B



Design and Analysis of Two-Level Factorials

Two-Level Factorials The Justification for Two-Levels Creating and Analyzing Two-Level Factorials with R Blocking Two-Level Factorials Restrictions on Randomization - Split-Plot Designs

Split-plot model has two error terms

The model for the complete split-plot experiment is obtained by adding the split-plot factors C and D and all their interactions with the other factors as shown

< 日 > < 同 > < 三 > < 三 >

Create the design with FrF2

```
> FrF2(32, 4, WPs = 8, nfac.WP = 2, factor.names = (c("A", "B", "C", "D")))
  run.no run.no.std.rp A B WP3
                                 C D
                 4.1.4 -1 -1
                                    1
2
                 1.1.1 -1 -1
                              -1 -1 -1
3
                 3.1.3 -1 -1
                                 1 -1
4
       4
                 2.1.2 -1 -1
                             -1 -1 1
  run.no run.no.std.rp A B WP3
                                   D
                29.8.1 1 1
                             1 -1 -1
6
       6
                30.8.2 1 1
7
                32.8.4 1 1
8
       R
                31.8.3 1 1
                             1 1 -1
   run.no run.no.std.rp A B WP3
9
        9
                 20.5.4 1 -1
                             -1
       10
10
                 18.5.2 1 -1
       11
                 17.5.1 1 -1
                              -1 -1 -1
12
       12
                 19.5.3 1 -1 -1 1 -1
              . . .
run.no run.no.std.rp A B WP3 C
                                  D
29
       29
                 15.4.3 -1 1
                              1 1
30
       30
                 16.4.4 -1 1
                              1
                                  1
                                    1
31
       31
                 13.4.1 -1 1
                              1 -1 -1
32
       32
                 14.4.2 -1 1
                             1 -1 1
class=design, type= FrF2.splitplot
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
```

< 日 > < 同 > < 三 > < 三 >

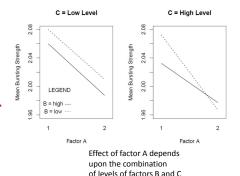
э

The data frame sausage is in the daewr package

```
> librarv(daewr)
> library(lme4)
Loading required package: Matrix
Loading required package: Rcpp
Attaching package: 'lme4'
The following object is masked from 'package:daewr':
    cake
> rmod2<-lmer(vs~ A + B + A:B + (1|Block) + (1|A:B:Block) + C + D + C:D + A:C + A:D +
+ B:C + B:D + A:B:C + A:B:D + A:C:D + B:C:D + A:B:C:D, data=sausage)
> summary(rmod2)
Linear mixed model fit by REML ['lmerMod']
Formula: vs ~ A + B + A:B + (1 | Block) + (1 | A:B:Block) + C + D + C:D +
   A:C + A:D + B:C + B:D + A:B:C + A:B:D + A:C:D + B:C:D + A:B:C:D
  Data: sausage
REML criterion at convergence: -69.4
Scaled residuals:
   Min
            10 Median
                             30
                                   Max
-1.5089 -0.3102 0.0000 0.3102 1.5089
Random effects:
Groups
        Name
                      Variance Std.Dev.
 A:B:Block (Intercept) 0.0003396 0.01843
Block (Intercept) 0.0000000 0.00000
 Residual
                      0.0002385 0.01544
Number of obs: 32, groups: A:B:Block, 8; Block, 2
```

(日) (同) (日) (日) (日)

Design and Analysis of Two-Level Factorials


Two-Level Factorials The Justification for Two-Levels Creating and Analyzing Two-Level Factorials with R Blocking Two-Level Factorials Restrictions on Randomization - Split-Plot Designs

Analysis of the fixed Effects

> anova(rmod2)

Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value
A	1	0.0068346	0.0068346	28.6517
в	1	0.0003926	0.0003926	1.6458
С	1	0.0038281	0.0038281	16.0480-
D	1	0.0005281	0.0005281	2.2140
A:B	1	0.0001685	0.0001685	0.7065
C:D	1	0.0002531	0.0002531	1.0611
A:C	1	0.0001531	0.0001531	0.6419
A:D	1	0.0009031	0.0009031	3.7860
B:C	1	0.0000781	0.0000781	0.3275
B:D	1	0.0002531	0.0002531	1.0611
A:B:C	1	0.0013781	0.0013781	5.7773 🖛
A:B:D	1	0.0007031	0.0007031	2.9476
A:C:D	1	0.0000281	0.0000281	0.1179
B:C:D	1	0.0000281	0.0000281	0.1179
A:B:C:D	1	0.0000281	0.0000281	0.1179

John Lawson FTC Short Course - Design and Analysis of Experiments with R

< ロ > < 同 > < 回 > < 回 >

An unreplicated split-plot design

Bisgaard et al.(1996) described an experiment that was performed to study the plasma treatment of paper, between electrodes in a low vacuum chamber reactor, to make it more susceptible to ink.

The factors are shown below.

	Lev	els		A
Factor	-	+	Difficulty in Changing Levels	P P
A - pressure	Low	High		Kin
B - Power Level	Low	High	difficult requires a new set up to change	
C - Gas Flow Rate	Low	High	difficult requires a new set up to change	
D - Type Gas	Oxygen	SiCl	difficult requires a new set up to change	
E - Paper Type	A	В	easy both types can be treated in the same run after setup is complete	

< ロ > < 同 > < 回 > < 回 >

The data frame plasma is in the daewr package

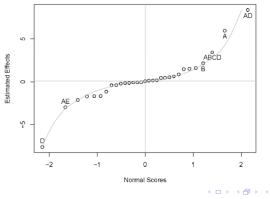
Table 8.6 Plasma Experiment Factor I	evels and	Response
--------------------------------------	-----------	----------

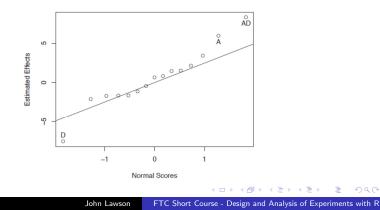
						E
	A	в	C	D	-	+
Whole-Plot Effects	-	_	_	-	48.6	57.0
A, B, AB, C, AC, BC, ABC, D, AD, BD, ABD, CD, ACD, BCD, ABCD	+	-	-	-	41.2	38.2
	-	+	-	-	55.8	62.9
Split-Plot Effects E and interactions with E	+	+	-	-	53.5	51.3
e and interactions with E	-	-	+	-	37.6	43.5
> library(daewr)	+	-	+	-	47.2	44.8
> sol <- $lm(y \sim A*B*C*D*E, data = plasma)$	-	+	+	-	47.2	54.6
> effects <- coef(sol)	+	+	+	-	48.7	44.4
<pre>> effects <- effects[c(2:32)]</pre>	-	-	-	+	5.0	18.1
> Wpeffects <- effects[c(1:4, 6:11, 16:19, 26)]	+	-	-	+	56.8	56.2
<pre>> Speffects <- effects[c(5,12:15,20:25,27:31)]</pre>	-	+	-	+	25.6	33.0
	+	+	-	+	41.8	37.8
	-	-	+	+	13.3	23.7
	+	-	+	+	47.5	43.2
	-	+	+	+	11.3	23.9
	+	+	+	+	49.5	48.2

- 4 同 🕨 - 4 目 🕨 - 4 目

Analysis by normal plot of all effects is misleading

> fullnormal(effects, names(Wpeffects), alpha = .10)

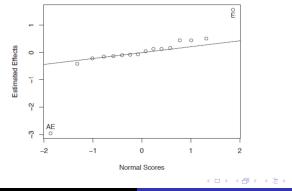



Figure 8.6 Normal Plot of All Effects-Plasma Experiment

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Normal plot of whole-plot effects

> fullnormal(Wpeffects, names(Wpeffects), alpha = .10)


Figure 8.4 Normal Plot of Whole-Plot Effects-Plasma Experiment

Normal plot of split-plot effects

> fullnormal(Speffects, names(Speffects), alpha = .05)

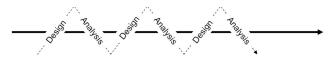
Figure 8.5 Normal Plot of Sub-Plot Effects—Plasma Experiment

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Preliminary

Part IV

Design and Analysis of Preliminary Experiments for Estimating Sources of Variance

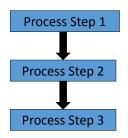

Outline of Part IV

Preliminary Exploration

- Introduction
- One-Factor Designs
- Two-Factor Designs
- Staggered Nested Designs for Multiple Factors
- Graphical Methods to Check Assumptions
- Chemistry Example

Chemistry Example

Preliminary Exploration


	0%		Knowledge	9	100%
Objective:	Preliminary Exploration	Screening Factors	Effect Estimation	Optimization	Mechanistic Modeling
No. of Factors		5 - 20	3 - 6	2 - 4	1 - 5
Purpose:	Identify Sources of Variability	Identify Important Factors	Estimate Factor Effects + Interactions	Fit Empirical Model Interpolate	Estimate Parameters of Theory Extrapolate
				• • • • • • • • • • • • • • • • • • •	(E) < E) = E

John Lawson FTC Short Course - Design and Analysis of Experiments with R

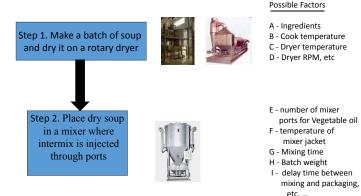
Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
-------------	--

Identify fruitful areas for identifying factors

Sampling Experiments

- Identify Process Steps that contribute the most variability
- Later identify factors in variable process steps that cause the variability

Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
Two sources of variability	


Hare (1988) discussed experiments to control variability in dry soup mix "intermix" (vegetable oil, salt flavorings etc.).

- too little not enough flavor
- too much too strong

Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Soup batch and Sample within batch

Preliminary

< ロ > < 同 > < 回 > < 回 >

Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
-------------	--

Method of Moments Estimators

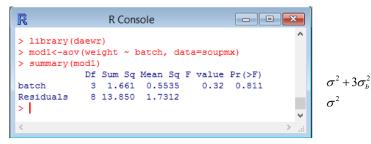

$$y_{ij} = \mu + t_i + \varepsilon_{(i)j}$$
 $i = 1,4, j = 1,3, k = 4, r = 3$

Table 5.4	Variability	in Dry Soup Intermix Weights
	Batch	Weight
	1	0.52, 2.94, 2.03
	2	4.59, 1.26, 2.78
	3	2.87, 1.77, 2.68
	4	1.38, 1.57, 4.10

Source	df	MS	EMS
Factor T	t-1	msT	$\sigma^2 + r\sigma_t^2$
Error	t(r-1)	msE	σ^2

Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Method of Moments Estimators

$$\hat{\sigma}^2 = 1.7312$$
$$\hat{\sigma}_b^2 = \frac{0.5535 - 1.7312}{3} < 0.0$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ●

Preliminary Preliminary Introduction One-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Maximum Likelihood and REML estimators

$$y_{ij} = \mu + t_i + \varepsilon_{(i)j}$$
 $y = X\beta + \epsilon, \quad \beta' = (\mu, t')$

$$\begin{pmatrix} t \\ \epsilon \end{pmatrix} \sim MVN \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_t^2 I_t & 0 \\ 0 & \sigma^2 I_n \end{pmatrix} \right), \qquad I_t \text{ is a } t \times t \text{ Identity matrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Maximum Likelihood and REML estimators

$$y_{ij} = \mu + t_i + \varepsilon_{(i)j}$$
 $y = X\beta + \epsilon, \quad \beta' = (\mu, t')$

$$\begin{pmatrix} t \\ \epsilon \end{pmatrix} \sim MVN \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_t^2 I_t & 0 \\ 0 & \sigma^2 I_n \end{pmatrix} \right), \qquad I_t \text{ is a } t \times t \text{ Identity matrix}$$

maximum likelihood estimators for σ_t^2 and σ^2 are found my maximizing

$$L(\mu, V|\boldsymbol{y}) = \frac{\exp\left[-\frac{1}{2}(\boldsymbol{y} - \mu \mathbf{1}_{\boldsymbol{n}})'V^{-1}(\boldsymbol{y} - \mu \mathbf{1}_{\boldsymbol{n}})\right]}{(2\pi)^{\frac{1}{2}n}|V|^{\frac{1}{2}}} = \frac{\exp\left\{-\frac{1}{2}\left[\frac{ssE}{\sigma^{2}} + \frac{ssT}{\lambda} + \frac{(\bar{y}_{-}-\mu)^{2}}{\lambda/n}\right]}{(2\pi)^{\frac{1}{2}n}\sigma^{2[\frac{1}{2}n]}\lambda^{\frac{1}{2}T}}$$

∃ >

Maximum Likelihood and REML estimators

$$y_{ij} = \mu + t_i + \varepsilon_{(i)j}$$
 $y = X\beta + \epsilon, \quad \beta' = (\mu, t')$

$$\begin{pmatrix} t \\ \epsilon \end{pmatrix} \sim MVN \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_t^2 I_t & 0 \\ 0 & \sigma^2 I_n \end{pmatrix} \right), \qquad I_t \text{ is a } t \times t \text{ Identity matrix}$$

maximum likelihood estimators for σ_t^2 and σ^2 are found my maximizing

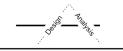
$$L(\mu, \mathbf{V}|\mathbf{y}) = \frac{\exp\left[-\frac{1}{2}(\mathbf{y} - \mu \mathbf{1}_{n})'\mathbf{V}^{-1}(\mathbf{y} - \mu \mathbf{1}_{n})\right]}{(2\pi)^{\frac{1}{2}n}|V|^{\frac{1}{2}}} = \frac{\exp\left\{-\frac{1}{2}\left[\frac{ssE}{\sigma^{2}} + \frac{ssT}{\lambda} + \frac{(\bar{y} - \mu)^{2}}{\lambda/n}\right]}{(2\pi)^{\frac{1}{2}n}\sigma^{2}[\frac{1}{2}n]\lambda^{\frac{1}{2}T}}$$

REML estimators for σ_t^2 and σ^2 are found my maximizing

$$L(\sigma^2, \sigma_t^2 | ssT, ssE) = \frac{L(\mu, \sigma^2, \lambda | \boldsymbol{y})}{L(\mu | \bar{\boldsymbol{y}}_{\cdot})}$$

Preliminary Preliminary Preliminary

Maximum Likelihood and REML estimators


```
> library(daewr)
> library(lme4)
> mod2<-lmer(weight ~ 1 + (1|batch), data=soupmx)</pre>
> summary(mod2)
Linear mixed model fit by REML ['lmerMod']
Formula: weight ~ 1 + (1 | batch)
   Data: soupmx
REML criterion at convergence: 37.5
Scaled residuals:
     Min
               10 Median
                                  30
                                           Max
-1 56147 -0 71722 -0 01614 0 43230 1 86604
Random effects:
                      Variance Std.Dev.
 Groups
          Name
                                                   \hat{\sigma}_{L}^{2} = 0.0
 batch (Intercept) 0.00
                                0.000
 Residual
                       1.41
                                1.187
                                                   \hat{\sigma}^2 = 1.41
Number of obs: 12, groups: batch, 4
Fixed effects:
            Estimate Std Error t value
(Intercept) 2.3742
                          0.3428 6.926
```

(日)

3

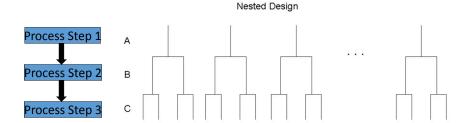
Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

The next step - screening factors

Preliminary

Objective: Preliminary Screening Exploration Factors

No. of	5 - 20
Factors	

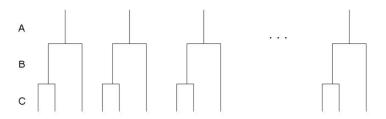

	Factor Label	Name	Low Level	High Level
Step 2. Place dry soup	A	Number of Ports	1	3
in a mixer where	В	Temperature	Cooling Water	Ambient
intermix is injected	\mathbf{C}	Mixing Time	60 sec.	80 sec.
through ports	D	Batch Weight	1500 lb	2000 lb
	E	Delay Days	7	1

John Lawson FTC Short Course - Design and Analysis of Experiments with R

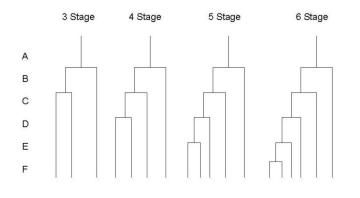
< ロ > < 同 > < 回 > < 回 >

Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
-------------	---

Nested design



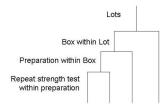
- ● ● ●


э

Prelir	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
	Chemistry Example

Staggered nested design

Staggered nested design


Method of moments estimation

			Stages	Term	EMS
	Staggered		3	А	$\sigma_C^2 + (5/3)\sigma_B^2 + 3\sigma_A^2$
	Nested	Nested		В	$\sigma_{C}^{2} + (4/3)\sigma_{B}^{2}$
Source	df	df		С	σ_C^2
А	a - 1	a – 1	4	А	$\sigma_D^2 + (3/2)\sigma_C^2 + (5/2)\sigma_B^2 + 4\sigma_A^2$
B in A	a	a		В	$\sigma_D^2 + (7/6)\sigma_C^2 + (3/2)\sigma_B^2$
C in B	a	2a		\mathbf{C}	$\sigma_D^2 + (4/3)\sigma_C^2$
D in C	a	4a		D	σ_D^2

Chemistry Example

An Example

Mason et al. (1989) described a study where a staggered nested design was used to estimate the sources of variability in a continuous polymerization process. In this process polyethylene pellets are produced in lots of one hundred thousand pounds. A four-stage design was used to partition the source of variability in tensile strength between lots, within lots and due to the measurement process.

< ロ > < 同 > < 回 > < 回 >

Preliminary Preliminary Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
--

Data from the first 10 of 30 lots

Table 5.13 Data from Polymerization Strength Variability Study

		Box 1	Box 2	
		Prepara	Preparation	
	1	L	2	1
Lot	test 1	test 2	test 1	test 1
1	9.76	9.24	11.91	9.02
2	10.65	7.77	10.00	13.69
3	6.50	6.26	8.02	7.95
4	8.08	5.28	9.15	7.46
5	7.84	5.91	7.43	6.11
6	9.00	8.38	7.01	8.58
7	12.81	13.58	11.13	10.00
8	10.62	11.71	14.07	14.56
9	4.88	4.96	4.08	4.76
10	9.38	8.02	6.73	6.99

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Preliminary Staggered Nested Designs Graphical Methods to Check Assumptions Chemistry Example

Method of moments estimators

```
R
                          R Console
                                                                         Data frame
> mod2<-aov(strength ~ lot + lot:box + lot:box:prep, data = polymer)</pre>
> summary(mod2)
                                                                         polymer
             Df Sum Sg Mean Sg F value
                                        Pr(>F)
lot.
             29
                856.0 29.516 45.552 < 2e-16
                                                                        is in the
lot:box
                 50.1
                        1.670
                                2.577 0.005774 **
             30
lot:box:prep 30
                  68.4
                        2.281
                                3.521 0.000457 ***
                                                                         daewr
Residuals
                  19.4
                        0.648
             30
                                                                         package
Signif, codes:
                0
                 ***** 0.001 **** 0.01 *** 0.05 *.* 0.1 * * 1
> |
```

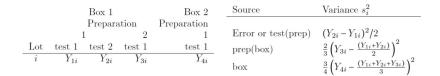
$$\begin{aligned} \sigma_R^2 &= 0.648 \\ \sigma_P^2 &= (2.281 - 0.648)/(4/3) = 1.22475 \\ \sigma_B^2 &= (1.670 - [0.648 + (7/6)1.22475])/(3/2) = -0.27125 \\ \sigma_L^2 &= (29.516 - [0.648 + (3/2)(1.22475) + (5/2)(-0.27125)])/4 = 6.92725 \end{aligned}$$

(日) (同) (三) (三)

э

Introduction One-Factor Designs Two-Factor Designs **Staggered Nested Designs for Multiple Factors** Graphical Methods to Check Assumptions Chemistry Example

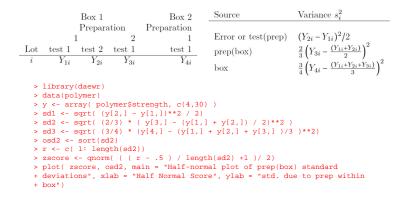
REML estimators


R			R Cons	ole			×
<pre>> modr3 <- lme > summary(mod)</pre>		~ 1 + (1 lot) + (1 lot:box) +	(1 lot:box:prep),	data = polymer)	^
Linear mixed r	nodel fit by	REML ['	lmerMod']				
Formula: stren Data: polyn		1 lot)	+ (1 10	t:box) + (1	lot:box:prep)		
REML criterion	n at converg	ence: 46	8.9			% Total	
Scaled residua					$\hat{\sigma}_{L}^{2} = 7.2427$	81.1%	
	lQ Median				L		
-2.1896 -0.411	19 -0.0206	0.3826	1.7703		$\hat{\sigma}_{B}^{2} = 0.0$	0.0%	
Random effects							
Groups	Name	Varianc	e Std.Dev.		$\hat{\sigma}_{p}^{2} = 0.1225$	12.3%	
lot:box:prep	(Intercept)	1.0296	1.0147		• • • • • •		
lot:box	(Intercept)	0.0000	0.0000		$\hat{\sigma}_{M}^{2} = 0.648$	7.4%	
lot	(Intercept)	7.2427	2.6912				
Residual		0.6568	0.8104				
Number of obs:	: 120, group	s: lot:	box:prep,	90; lot:box,	60; lot, 30		
Fixed effects:							
Es	stimate Std.	Error t	value				
(Intercept)	7.2208	0.5087	14.2				
(3

<ロ> <同> <同> < 同> < 同>

э

Chemistry Example


Variance components are pooled variances

- A 3 N

Preliminary Preliminary Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Computing and graphing variances in R

(日) (同) (三) (三)

Computing and graphing variances in R

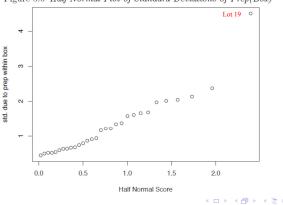


Figure 5.6 Half-Normal Plot of Standard Deviations of Prep(Box)

John Lawson FTC Short Course - Design and Analysis of Experiments with R

э

Preliminary Prelim	
--	--

Odd value in Lot 19

Table 5.18 Raw Data for Each Lot and Calculated Standard Deviations

lot	Y_1	Y_2	Y_3	Y_4	s_1	s_2	s_3
1	9.76	9.24	11.91	9.02	0.368	1.968	1.111
2	10.65	7.77	10.00	13.69	2.036	0.645	3.652
3	6.50	6.26	8.02	7.95	0.170	1.339	0.886
4	8.08	5.28	9.15	7.46	1.980	2.017	0.038
5	7.84	5.91	7.43	6.11	1.365	0.453	0.823
6	9.00	8.38	7.01	8.58	0.438	1.372	0.390
7	12.81	13.58	11.13	10.00	0.544	1.686	2.171
8	10.62	11.71	14.07	14.56	0.771	2.372	2.102
9	4.88	4.96	4.08	4.76	0.057	0.686	0.104
10	9.38	8.02	6.73	6.99	0.962	1.608	0.912
11	5.91	5.79	6.59	6.55	0.085	0.604	0.393
12	7.19	7.22	5.77	8.33	0.021	1.172	1.389
13	7.93	6.48	8.12	7.43	1.025	0.747	0.069
14	3.70	2.86	3.95	5.92	0.594	0.547	2.093
15	4.64	5.70	5.96	5.88	0.750	0.645	0.387
16	5.94	6.28	4.18	5.24	0.240	1.576	0.196
17	9.50	8.00	11.25	11.14	1.061	2.041	1.348
18	10.93	12.16	9.51	12.71	0.870	1.662	1.596
19	11.95	10.58	16.79	13.08	0.969	4.511	0.023

<ロト <部ト < 注ト < 注ト FTC Short Course - Design and Analysis of Experiments with R

æ

	Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested De Graphical Methods to Chemistry Example	

Reanalysis excluding lot 19

Table 5.19 Comparison of Method of Moments and REML Estimates for Polymerization Study after Removing Lot 19

	Method of Moments	REML
Component	Estimator	Estimator
Lot (σ_a^2)	5.81864	6.09918
Box(Lot) (σ_b^2)	0.13116	0.04279
$\operatorname{Prep}(\operatorname{Box})(\sigma_c^2)$	0.76517	0.79604
Error (σ^2)	0.63794	0.64364

同 ト イ ヨ ト イ ヨ ト

Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Catalyst Support Material

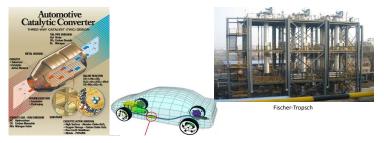
Interest in catalyst support in lab

•The rate of catalyst reaction is related to the available number of catalytic sites. To increase the number of active sites, catalysts are dispersed on a support

Interest in making Al₂O₃ catalyst support

- 1. High thermal stability
- 2. High surface area
- 3. Mesoporous nature

Important catalyst support properties

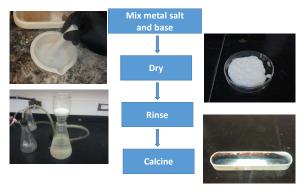

- 1. High surface area →increase catalyst dispersion and catalytic reaction sites →decrease reaction times.
- 2. Optimal pore size \rightarrow each catalytic system requires a unique pore size \rightarrow better diffusion and selectivity.
- 3. Thermal stability →many catalytic reactions take place at elevated temperatures.

・ロト ・同ト ・ヨト ・ヨト

Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
-------------	---

Applications of Alumina Catalyst Support

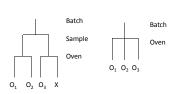
- · Aluminum oxides support applications
- Automotive Gasoline Catalytic Converters, which converts toxic chemical (carbon monoxide and unburned hydrocarbon) in exhaust to CO₂ and H₂O.
- 2. Fischer-Tropsch synthesis (FTS), which liquid fuels are produced from natural gas.



・ロト ・同ト ・ヨト ・ヨト

Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Process to Create Alumina Catalyst Support


Basic Synthesis Method

イロト イポト イヨト イヨ

Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
-------------	--

Exploration Experiment 1

$$O_1 = O_2 \neq O_3$$

>	Expl			
	Batch	Oven	PoreV	SA
1	1	1	1.05	172
2	1	2	1.35	188
3	1	3	1.13	164
4	2	1	1.21	183
5	2	2	1.39	193
6	2	3	1.28	190
7	3	1	1.26	182
8	3	2	1.41	189
9	3	3	1.25	183
10		1	1.27	172
11		2	1.40	183
12		3	1.28	172
13		1	1.20	171
14		2	1.42	189
15		3	1.17	171
16		1	1.19	175
17		2	1.33	180
18		3	1.22	179
19		1	1.18	165
20		2	1.37	183
21		3	1.08	163
22		1	1.22	167
23		2	1.30	169
24		3	1.18	184
25		1	1.21	173
26		2	1.39	186
27		3	1.11	165
28		1	1.17	156
29		2	1.27	168
30	10	3	1.00	155

- **→** → **→**

 Preliminary Prelim

Analysis of Exploration Experiment 1

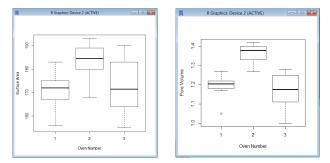
```
> modE1<-lmer(PoreV ~ 1 + (1|Batch), data=Expl)</pre>
> summary(modE1)
Linear mixed model fit by REML ['lmerMod']
Formula: PoreV ~ 1 + (1 | Batch)
   Data: Expl
REML criterion at convergence: -42.4
Scaled residuals:
    Min
              10 Median
                                 30
                                        Max
-2.21247 -0.57360 -0.07284 0.72383 1.61155
Random effects:
Groups
         Name
                    Variance Std.Dev.
Batch
          (Intercept) 0.00000 0.0000
 Residual
                     0.01206 0.1098
Number of obs: 30, groups: Batch, 10
Fixed effects:
            Estimate Std. Error t value
(Intercept) 1.24300 0.02005 61.99
```

э

Preliminary Preliminary Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Analysis of Exploration Experiment 1

```
> modEl<-lmer(SA ~ 1 + (1|Batch), data=Expl)</pre>
> summary(modE1)
Linear mixed model fit by REML ['lmerMod']
Formula: SA ~ 1 + (1 | Batch)
   Data: Expl
REML criterion at convergence: 218.1
Scaled residuals:
            10 Median
   Min
                            30
                                   Max
-1.3054 -0.6465 -0.1551 0.8390 1.5276
Random effects:
Groups Name
                     Variance Std.Dev.
Batch (Intercept) 37.09
                              6.090
 Residual
                     71.77
                              8.472
Number of obs: 30, groups: Batch, 10
Fixed effects:
           Estimate Std. Error t value
(Intercept) 175.67
                                 71.12
                          2.47
```

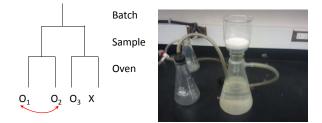

イロト イポト イヨト イヨト

3

Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Residual Variability

> boxplot(SA~Oven, data=Exp1, ylab="Surface Area", xlab="Oven Number")



<ロ> <同> <同> < 同> < 同>

3

Preliminary Prelim

Possible Explanation

maybe extra time on the bench affects PoreV and SA not Oven

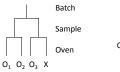
< ロ > < 同 > < 回 > < 回 >

Preliminary	Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example

Exploratory Experiment 2

> Exp2

	Batch	Oven	PoreV	SA	
-	1	1	1.19	170	
2	1	2	1.18	172	
3	1	3	1.05	186	-
ł	2	1	1.11	180	
5	2	2	1.06	180	
5	2	3	1.14	197	
7	3	1	1.16	214	
3	3	2	1.49	208	
)	3	3	1.33	292	←
0	4	1	1.44	224	
.1	4	2	1.32	210	
.2	4	3	2.22	325	-
	- 2 3 4 5 5 7 8 9 -0 -1 -2	1 2 1 3 4 2 5 2 5 2 3 3 3 3 3 3 4 4 4	1 1 2 1 2 3 1 3 4 2 1 5 2 2 5 2 3 4 3 2 5 2 3 6 3 3 2 3 3 1 4 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


- **→** → **→**

э

э

Preliminary Preliminary Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions Chemistry Example
--

Another Conjecture

>	Exp2

	Batch	Oven	PoreV	SA	
1	1	1	1.19	170	
2	1	2	1.18	172	
3	1	3	1.05	186	
4	2	1	1.11	180	
5	2	2	1.06	180	
б	2	3	1.14	197	
7	3	1	1.16	214	
8	3	2	1.49	208	
9	3	3	1.33	292	
10	4	1	1.44	224	
11	4	2	1.32	210	
12	4	3	2.22	325	

Batches 3 and 4 used a different (slower) filter and thus had a longer exposure time to sec-butanol which seemed to affect Pore Volume and Surface Area

(日) (同) (三) (三)

3

Introduction One-Factor Designs Two-Factor Designs Staggered Nested Designs for Multiple Factors Graphical Methods to Check Assumptions **Chemistry Example**

Experiment to Estimate Effects

Split-Plot Fractional Factorial

>	Exp3								
	Batch	Mix_Time	Bench_Time	Exp_Time	Boats	PoreV	SA		
1	1	1	1	1	1	0.73	177]		
2	1	1	1	-1	-1	0.64	170		Boats = Exposure Time
3	1	1	-1	-1	-1	0.66	187		Boats – Exposure Time
4	1	1	-1	1	1	0.68	210 J		
5	2	-1	-1	1	1	1.17	ך 191	1	
б	2	-1	1	1	-1	1.13	169		
7	2	-1	-1	-1	-1	1.11	203	Γ.	Boats = Bench Time× Exposure Time
8	2	-1	1	-1	1	1.13	173		
9	3	1	1	-1	1	0.95	137 J		
10) 3	1	1	1	1	0.98	137		Deale Deale The
11	. 3	1	-1	-1	-1	0.96	191		Boats = Bench Time
12	2 3	1	-1	1	-1	NA	NA		
13	3 4	-1	-1	1	1	0.99	218		
14	4 4	-1	1	-1	-1	1.06	191		Boats = - Bench Time
15	5 4	-1	1	1	-1	1.24	191		board - benefit fille
16	5 4	-1	-1	-1	1	1.11	162 _		

John Lawson FTC Short Course - Design and Analysis of Experiments with R

(a)

э

Experiment to Further Study Relationships

Split-Plot 3³ Fractional Factorial

> E	Exp4					
	Batch	Mix_Time	Exp_Time	Boats	PoreV	SA
1	1	1	1	-1	0.93	187
2	1	1	-1	1	0.94	132
3	2	1	1	1	0.68	210
4	2	1	-1	-1	0.66	187
5	3	-1	-1	-1	1.31	170
6	3	-1	1	1	1.19	217
7	4	0	1	0	0.75	143
8	4	0	0	1	0.75	137
9	5	-1	0	0	1.00	164
10	5	-1	0	0	1.02	171
11	б	-1	1	-1	1.11	203
12	6	-1	-1	1	1.17	191
13	7	0	0	1	0.70	140
14	7	0	1	0	0.76	171

同 ト イ ヨ ト イ ヨ ト

Preliminary Prelim	
--	--

Results of Experiments

Effect of Factors on Catalyst Support Properties

	Properties		
Factor	Pore Volume	Surface Area	
Mixing Time	+		
Bench Time		-	
Exposure Time to sec-Butanol		+	

- 1. High surface area →increase catalyst dispersion and catalytic reaction sites →decrease reaction times.
- 2. Optimal pore size →each catalytic system requires a unique pore size →better diffusion and selectivity.

Screening

Part V

Design and Analysis of Screening Experiments

John Lawson FTC Short Course - Design and Analysis of Experiments with R

- **→** → **→**

э

Outline of Part V

- 5 Design and Analysis of Screening Experiments
 - Introduction
 - Half-Fractions of Two-Level Factorial Designs
 - One-Quarter and Higher Fractions of Two-Level Factorial Designs
 - Criteria for Choosing Generators for Fractional Factorial Designs
 - Augmenting Fractional Factorial Designs to Resolve Confounding
 - Plackett-Burman and Model Robust Screening Designs

伺 ト イヨト イヨト

Introduction Half-Fractions of Two-Level Factorial Designs Screening Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
--

Number of Experiments required for Two-Level Factorials

Number of Factors	Number of Experiments
4	16
5	32
6	64
7	128
8	256
9	512

|--|

One-at-a-Time Experiments

A Poor Solution is to Use One-at-a-Time Experiments

Run	А	В	С	D	Е	F	G	н	
1	-	-	-	-	-	-	-	-	
2	+	-	-	-	-	-	-	-	
3	-	+	-	-	-	-	-	-	
4	-	-	+	-	-	-	-	-	
5	-	-	-	+	-	-	-	-	
6	-	-	-	-	+	-	-	-	
7	-	-	-	-	-	+	-	-	
8	-	-	-	-	-	-	+	-	
9	-	-	-	-	-	-	-	+	

< ∃ > <

Screening	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

- Method for strategically picking a subset of a two-Level Factorial
- Used for Screening purposes

Fractional Factorial Designs

- Has much higher Power for Detecting Effects than One-at-a-Time Experiments
- Can be used to estimate some interaction effects and do limited optimization

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Paradigms that Justify the Use of Fractional Factorials

- Effect Sparsity Principle-Box and Meyer (1986)
- Hierarchical Ordering Principle-Wu and Hamada(2000)
- Effect Heredity Principle–Hamada and Wu(1992)

|--|

For example, to construct a one-half fraction of a 2^k design, denoted by $\frac{1}{2}2^k$ or 2^{k-1} , the procedure is as follows:

- 1. Write down the base design, a full factorial plan in k-1 factors using the coded factor levels (–) and (+).
- 2. Add the kth factor to the design by making its coded factor levels equal to the product of the other factor levels (i.e., the highest order interaction).
- 3. Use these k columns to define the design.

Procedure for Constructing a Half-Fraction

・ 同 ト ・ ヨ ト ・ ヨ ト

The Base Design

24-1 Base Design

X_A	X_B	X_C
-	-	-
+	-	-
-	+	-
+	+	-
-	-	+
+	-	+
-	+	+
+	+	+

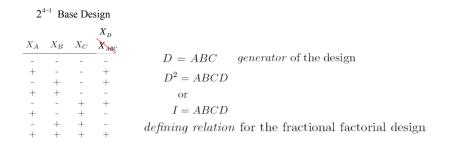
- **→** → **→**

Screening	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
-----------	---

Adding an Interaction Column

2⁴⁻¹ Base Design

X_A	X_B	X_C	X_{ABC}		
-	-	-	-		
+	-	-	+		
-	+	-	+		
+	+	-	-		
-	-	+	+		
+	-	+	-		
-	+	+	-		
+	+	+	+		


Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
--

Assigning the Added Factor to the Interaction

2 ^{4–1} Base Design			
			X_{D}
X_A	X_B	X_C	XARC
-	-	-	-
+	-	-	+
-	+	-	+
+	+	-	-
-	-	+	+
+	-	+	-
-	+	+	-
+	+	+	+

Screening	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
Screening	Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding

The Defining Relationship

< ∃ →

-

Screening Screening Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
--

The Confounding Pattern

	X_A	X_B	X_C	X_D
A(I) = A(ABCD)	-	-	-	-
or	+	-	-	+
A = BCD	-	$^+$	-	+
II - BOB	+	+	-	-
	-	-	+	+
	+			-
	-		+	-
	+	+	+	+
$\begin{bmatrix} I + ABCD \\ A + BCD \\ B + ACD \\ C + ABD \\ D + ABC \\ AB + CD \\ AC + BD \\ AD + BC \end{bmatrix}$			0	pattern ucture

Screening Screening Introduction Half-Fractions of Two-Level Factors One-Quarter and Higher Fractions Criteria for Choosing Generators for Augmenting Fractional Factorial Du Plackett-Burman and Model Robu	of Two-Level Factorial Designs Fractional Factorial Designs signs to Resolve Confounding
---	--

An Example of a Half-Fraction

Table 6.3 I	Factors and Levels for	r Soup Mix 2^{5-1} Es	vperiment
Factor Label	Name	Low Level	High Level
A	Number of Ports	1	3
В	Temperature	Cooling Water	Ambient
\mathbf{C}	Mixing Time	60 sec.	80 sec.
D	Batch Weight	$1500 \ \text{lbs}$	$2000 \ lbs$
Е	Delay Days	7	1

-

Creating the Design with FrF2

```
> library(FrF2)
> soup <- FrF2(16, 5, generators = "ABCD", factor.names = list(A=c(1,3),
+ B=c("Cool", "Ambient"),
              C=c(60,80), D=c(1500,2000), E=c(7,1)), randomize = FALSE)
+
> soup
   А
             C
                   DE
           R
        Cool 60 1500 1
1
  1
2
   3
        Cool 60 1500 7
3
   1 Ambient 60 1500 7
4
   3 Ambient 60 1500 1
        Cool 80 1500 7
   1
        Cool 80 1500 1
   3
   1 Ambient 80 1500 1
   3 Ambient 80 1500 7
8
   1
        Cool 60 2000 7
9
10 3
        Cool 60 2000 1
11 1 Ambient 60 2000 1
12 3 Ambient 60 2000 7
13 1
        Cool 80 2000 1
14 3
        Cool 80 2000 7
15 1 Ambient 80 2000 7
16 3 Ambient 80 2000 1
class=design, type= FrF2.generators
```

イロト イポト イヨト イヨト

Screening Introduction Half-Fractions of Two-Level Factorial Designs Occeeding Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Adding the Responses

```
> y <- c(1.13, 1.25, .97, 1.70, 1.47, 1.28, 1.18, .98, .78,
         1.36, 1.85, .62, 1.09, 1.10, .76, 2.10)
> library(DoE.base)
> soup <- add.response( soup , v )</pre>
> soup
   А
           в
              C
                   DE
                          У
        Cool 60 1500 1 1.13
2
   ٦
        Cool 60 1500 7 1.25
  1 Ambient 60 1500 7 0.97
٦
4
   3 Ambient 60 1500 1 1.70
5
  1
        Cool 80 1500 7 1.47
6
        Cool 80 1500 1 1.28
  3
7
   1 Ambient 80 1500 1 1.18
8
   3 Ambient 80 1500 7 0.98
9
  1
        Cool 60 2000 7 0.78
10 3
        Cool 60 2000 1 1.36
    Ambient 60 2000 1 1.85
12 3
     Ambient 60 2000 7 0.62
13 1
        Cool 80 2000 1 1.09
14 3
        Cool 80 2000 7 1.10
15 1 Ambient 80 2000 7 0.76
16 3 Ambient 80 2000 1 2.10
class=design, type= FrF2.generators
```

(日) (同) (三) (三)

Screening	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
-----------	---

Checking the Alias Pattern

```
> mod1 <- lm(y \sim (.)^4, data = soup)
> aliases(mod1)
 A = B:C:D:E
 B = A:C:D:E
 C = A:B:D:E
 D = A:B:C:E
 E = A:B:C:D
 A:B = C:D:E
 A:C = B:D:E
 A:D = B:C:E
 A:E = B:C:D
 B:C = A:D:E
 B:D = A:C:E
 B:E = A:C:D
 C:D = A:B:E
 C:E = A:B:D
 D:E = A:B:C
```

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

|--|

Paradigms that Simplify the Interpretation of Results

- Effect Sparsity Principle-Box and Meyer (1986)
- Hierarchical Ordering Principle-Wu and Hamada(2000)
- Effect Heredity Principle-Hamada and Wu (1992)

 Screening
 Introduction

 Half-Fractions of Two-Level Factorial Designs

 One-Quarter and Higher Fractions of Two-Level Factorial Designs

 Criteria for Choosing Generators for Fractional Factorial Designs

 Augmenting Fractional Factorial Designs to Resolve Confounding

 Plackett-Burman and Model Robust Screening Designs

Analyzing the Data

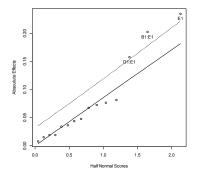
```
> mod2<-lm(y~(.)^2, data=soup)
> summary(mod2)
```

Call: lm.default(formula = $y \sim (.)^2$, data = soup)

Residuals: ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:

	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	1.22625		NA		NA	NA
A1	0.07250		NA		NA	NA
В1	0.04375		NA		NA	NA
C1	0.01875		NA		NA	NA
D1	-0.01875		NA		NA	NA
E1	0.23500		NA		NA	NA
A1:B1	0.00750		NA		NA	NA
A1:C1	0.04750		NA		NA	NA
A1:D1	0.01500		NA		NA	NA
A1:E1	0.07625		NA		NA	NA
B1:C1	-0.03375		NA		NA	NA
B1:D1	0.08125		NA		NA	NA
B1:E1	0.20250		NA		NA	NA
C1:D1	0.03625		NA		NA	NA
C1:E1	-0.06750		NA		NA	NA
D1:E1	0.15750		NA		NA	NA


(日) (同) (三) (三)

Half-Fractions of Two-Level Factorial Designs Screening

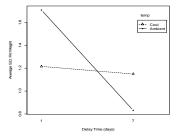
Half-Normal Plot of Coefficients

> library(daewr)

> LGB(coef(mod2)[-1], rpt=FALSE)

John Lawson

< □ > < 同 > < 回 > FTC Short Course - Design and Analysis of Experiments with R


Interpretation of Results

Screening

Half-Fractions of Two-Level Factorial Designs

- > soup <- FrF2(16, 5, generators = "ABCD", factor.names = + list(Ports=c(1,3),Temp=c("Cool", "Ambient"), MixTime=c(60,80), + BatchWt=c(1500,2000), delay=c(7,11), randomize = FALSE) > y <- c(1.13, 1.25, .97, 1.70, 1.47, 1.28, 1.18, .98, .78, + 1.36, 1.85, .62, 1.09, 1.10, .76, 2.10) > library(DoE.base) > soup <- add.response(soup , y) > delay <- as.numeric(sub(-1, 7, soup\$delay)) > temp <- soup\$Temp > interaction.plot(delay, temp, soup\$y, type="b", + pch=c(24,18,22), leg.bty="o",
- + main="Interaction Plot for Mixing Temperature by Delay time",
- + xlab="Delay Time (days)", ylab="Average S.D. Fill Weight")

Interaction Plot for Mixing Temperature by Delay time

(日) (同) (三) (三)

 Introduction

 Half-Fractions of Two-Level Factorial Designs

 One-Quarter and Higher Fractions of Two-Level Factorial Designs

 Criteria for Choosing Generators for Fractional Factorial Designs

 Augmenting Fractional Factorial Designs to Resolve Confounding

 Plackett-Burman and Model Robust Screening Designs

Confounding in Higher Order Fractions

 $\frac{1}{2^{p}}2^{k} = 2^{k-p} k$ is the number of factors, p is the fraction power

• In a one half fraction of a 2^k experiment every effect that could be estimated was confounded with one other effect, thus one half the effects had to be assumed negligible in order to interpret or explain the results

• In a one quarter fraction of a 2^k experiment every effect that can be estimated is confounded with three other effects, thus three quarters of the effects must be assumed negligible in order to interpret or explain the results

• In a one eighth fraction of a 2^k experiment every effect that can be estimated is confounded with seven other effects, thus seven eights of the effects must be assumed negligible in order to interpret or explain the results, etc.

Screening	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
-----------	---

Procedure for Constructing Higher Order Fractions

Creating a 2k-p Design

- 1. Create a full two-level factorial in k-p factors
- 2. Add each of the remaining p factors by assigning them to a column of signs for an interaction among the first k-p columns

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Design Criteria for Choosing Generators for Fractional Factorial Design Augmenting Fractional Factorial Designs to Resolve Confoundir Plackett-Burman and Model Robust Screening Designs
--

Example of Quarter Fraction

			X_D	X_E		
X_A	X_B	X_C	$X_A X_B$	$X_A X_C$	$X_B X_C$	$X_A X_B X_C$
-	-	-	+	+	+	-
+	-	-	-	-	+	+
-	+	-	-	+	-	+
+	+	-	+	-	-	-
-	-	+	+	-	-	+
+	-	+	-	+	-	-
-	+	+	-	-	+	-
+	+	+	+	+	+	+

個 と く き と く き と

Example of Quarter Fraction

			X_D	X_E		
X_A	X_B	X_C	$\widetilde{X_A X_B}$	$\widetilde{X_A X_C}$	$X_B X_C$	$X_A X_B X_C$
-	-	-	+	+	+	-
+	-	-	-	-	+	+
-	+	-	-	+	-	+
+	+	-	+	-	-	-
-	-	+	+	-	-	+
+	-	+	-	+	-	-
-	+	+	-	-	+	-
+	+	+	+	+	+	+
		Ų				
X_A	X_B	X_C	X_D	X_E		
-	-	-	+	+		
+	-	-	-	-		D
-	+	-	-	+		D
+	+	-	+	-		
-	-	+	+	-		Tl
+	-	+	-	+		
-	+	+	-	-		
+	+	+	+	+		

D = AB and E = AC

These are the generators

/□ ▶ < 글 ▶ < 글

 Introduction
 Half-Fractions of Two-Level Factorial Designs

 Screening
 One-Quarter and Higher Fractions of Two-Level Factorial Designs

 Criteria for Choosing Generators for Fractional Factorial Designs
 Augmenting Fractional Factorial Designs to Resolve Confounding

 Plackett-Burman and Model Robust Screening Designs
 Plackett-Burman and Model Robust Screening Designs

Example of Quarter Fraction

D = AB and E = ACI = ABD and I = ACE

the generators

the generalized interaction

(日) (同) (三) (三)

since $I^2 = I$ I = ABD(ACE) I = BCDE

$$I = ABD = ACE = BCDE$$

$$\uparrow$$

the defining relation

Create the Design in FrF2

```
> frac <- FrF2( 16, 6, generators = c("AB", "AC"),randomize=FALSE)</pre>
> frac
    А
       в
          C
  -1 -1 -1 -1
    1 -1 -1 -1 -1
3
  -1
       1 -1 -1 -1
4
       1 -1 -1
    1
                  - 1
5
   -1 -1
         1 -1
6
   1 -1
         1 -1 -1
7
   -1
          1 -1 -1 -1
8
          1
9
   -1 -1 -1
            1
    1 -1 -1
            1 -1
11 -1
             1 -1
12
               1
                   - 1
13 -1 -1
14
    1 -1
          1
15 -1
     1
          1
             1 -1 -1
16
   1 1
         1
             1
               1 1
class=design, type= FrF2.generators
```

(日) (同) (三) (三)

 Introduction

 Half-Fractions of Two-Level Factorial Designs

 Screening

 Criteria for Choosing Generators for Fractional Factorial Designs

 Augmenting Fractional Factorial Designs to Resolve Confounding

 Plackett-Burman and Model Robust Screening Designs

View the Alias Structure

```
> v <- runif( 16, 0, 1 )</pre>
> aliases( lm(y \sim (.)^3, data = frac) )
 A = B:E = C:E
 B = C:E:F = A:E
 C = B:E:F = A:F
 E = A:B = B:C:F
 F = A:C = B:C:E
 A:D = C:D:F = B:D:E
 B:C = E:F = A:B:F = A:C:E
 B:D = A:D:E
 B:F = C:F = A:B:C = A:F:F
 C:D = A:D:F
 D:E = A:B:D
 D:F = A:C:D
 B:C:D = D:E:F
 B:D:F = C:D:E
```

イロト イポト イヨト イヨト 三日

Some Generators Better than Others

```
> frac <- FrF2( 16, 6, generators = c("ABC", "BCD"),randomize=FALSE)</pre>
> aliases( lm(y \sim (.)^3), data = frac) )
A = B:C:E = D:E:F
B = A:C:E = C:D:F
C = B:D:F = A:B:E
D = A:E:F = B:C:F
E = A:D:F = A:B:C
F = A:D:E = B:C:D
A:B = C:E
A:C = B:E
A:D = E:F
A:E = B:C = D:F
A:F = D:E
B:D = C:F
B:F = C:D
A:B:D = A:C:F = B:E:F = C:D:F
A:B:F = A:C:D = B:D:E = C:E:F
```

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3

Screening	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
-----------	--

Criteria for Choosing Generators

- Resolution-Box and Hunter(1961)
- Minimum Aberration–Fries and Hunter 1980
- Maximum Number of Clear Effects-Chen et. al.(1993)

Scree	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Criteria for Choosing Generators

Resolution-Shortest Word in the Defining Relation

Resolution III Main effects confounded with two-factor interactions

- Resolution IV Main effects confounded with three-factor interactions, two-factor interactions confounded with other two-factor interactions
- Resolution V Main effects and two-factor interactions estimable, assuming three factor and higher order interactions negligible

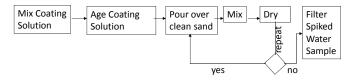
Resolution R Each subset of R-1 factors forms a full factorial possibly replicated

FrF2 Default-Minimum Aberration Design

```
> ## maximum resolution minimum aberration design with 9 factors in 32 runs
> ## show design information instead of design itself
> design.info(FrF2(32,9))
Scatlq.entry
Design: 9-4.1
   32 runs, 9 factors,
   Resolution IV
                                                          8 Clear
  Generating columns: 7 11 19 29
                                                          two-factor
   WLP (3plus): 0 6 8 0 0 , 8 clear 2fis
 Factors with all 2fis clear; J
                                                          interactions
Saliased
$aliased$legend
[1] "A=A" "B=B" "C=C" "D=D" "E=E" "F=F" "G=G" "H=H" "J=J"
ŚaliasedŚmain
character(0)
$aliased$fi2
 [1] "AB=CF=DG=EH" "AC=BF"
                                 "AD=BG"
                                                "AE=BH"
                                                              "AF=BC"
 [6] "AG=BD"
                   "AH=BE"
                                 "CD=FG"
                                                "CE=FH"
                                                              "CG=DF"
[11] "CH=EF"
                  "DE=GH"
                                 "DH=EG"
```

Screening

FrF2 Option-Maximum Number of Clear Effects


```
> ## maximum number of free 2-factor interactions instead of minimum aberration
> ## show design information instead of design itself
>design.info(FrF2(32,9,MaxC2=TRUE))
$catlq.entry
Design: 9-4.2
   32 runs, 9 factors,
                                                    15 Clear
   Resolution IV
                                                    two-factor
  Generating columns: 7 11 13 30
                                                    interactions
  WLP (3plus): 0 7 7 0 0 , 15 clear 2fis
 Factors with all 2fis clear: E J
Saliased
$aliased$legend
[1] "A=A" "B=B" "C=C" "D=D" "E=E" "F=F" "G=G" "H=H" "J=J"
ŚaliasedŚmain
character(0)
$aliased$fi2
[1] "AB=CF=DG" "AC=BF=DH" "AD=BG=CH" "AF=BC=GH" "AG=BD=FH" "AH=CD=FG" "BH=CG=DF"
```

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3

Example of One-eighth Fraction

Iron Oxide Coated Sand (IOCS) used to remove arsenic from ground water in simple household filtration systems. Coating solution made of ferric nitrate and sodium hydroxide with NAOH added to control pH.

Ramakrishna et. al. (2006) conducted experiments to optimize The coating process.

Screening	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
-----------	---

Factors and Levels

		Le	evels
Label	Factors	-	+
A	coating pH	2.0	12.0
В	drying temperature	110°	800°
\mathbf{C}	Fe concentration in coating	$0.1 \ {\rm M}$	2 M
D	number of coatings	1	2
\mathbf{E}	aging of coating	4 hrs	12 days
\mathbf{F}	pH of spiked water	5.0	8.0
G	mass of adsorbent	$0.1~{ m g}$	$1 \mathrm{g}$

 Table 6.7 Factors and Levels for Arsenic Removal Experiment

 Lovals

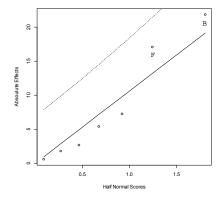
イロン イロン イヨン イヨン

Create Design with FrF2 in Coded Factor Levels

```
> arsrm<-FrF2(8,6,generators = c("AB", "AC", "BC"), randomize=FALSE)</pre>
> v<-c(69.95, 58.65, 56.25, 53.25, 94.40, 73.45, 10.0, 2.11)
> library(DoE.base)
> arsrm2<-add.response(arsrm.v)</pre>
> arsrm2
  ABCDEF
1 -1 -1 -1 1 1 1 69.95
2 1 -1 -1 -1 -1 1 58.65
3 -1 1 -1 -1 1 -1 56.25
 1 1 -1 1 -1 -1 53.25
4
5 -1 -1 1 1 -1 -1 94.40
6 1 -1 1 -1 1 -1 73.45
7 -1 1 1 -1 -1
                 1 10.00
8
  1
     1
        1
              1
                 1 2.11
           1
class=design, type= FrF2.generators
```

・ロト ・同ト ・ヨト ・ヨト

Analysis of the Data


> Lmod<-lm(y ~ (.)^2,data=arsrm2)</pre>

Screening

- > estef<-coef(Lmod)[c(2:7,12)]</pre>
- > library(daewr)
- > LGB(estef,rpt=FALSE)

> a	⊥ıa	ses	Lmod	Ì

А	=	в:	D =	C	Έ	
В	=	C:	F =	A	D	
С	=	в	F =	A	E	
D	=	Е:	F =	A	в	
Е	=	D:	F =	A	C	
F	=	в:	C =	D	E	
A	F	= 1	в:Е	=	C	1

(日) (同) (三) (三)

Possible Interpretations of Results from 'Effect Heredity'

Important factors

Optimal Levels

1. B – Drying Temperature & F – PH of Spiked Water

B – Drying Temperature & BC interaction
 C – Fe concentration in coating

3. F - PH of Spiked Water & CF interaction

Low Drying Temp. and Low PH

Low Drying Temp. High Fe Conc.

Low PH High Fe conc.

< ロ > < 同 > < 回 > < 回 >

Fractional Factorials in Split-Plot Designs

				(.	I = 1	^{P}QK	2)
			P	-	+	_	+
(I :	= AE	BC)	Q	-	_	+	+
A	B	C	R	+	-	-	-
-	-	+		х	х	х	х
+	-	-		х	х	х	х
-	+	-		х	х	х	х
+	+	+		х	х	х	х

Screening

 $(I + ABC) \times (I + PQR) = I + ABC + PQR + ABCPQR$

Resolution III

Screening	Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Split-Plot Confounding

P = -QR when whole-plot factor A is at its low level

P = +QR when the whole-plot factor A is at its high level.

		BC)	= AE	(I =
		C	B	A
	I = -PQR	+	-	-
	I = +PQR	_	_	+
Resolution III, but less aberrati	I = -PQR	_	+	_
	I = +PQR	+	+	+

 $P = AQR \Rightarrow (I + ABC)(I + APQR) = I + ABC + APQR + BCPQR$

同 ト イ ヨ ト イ ヨ ト

Creating a Minimum Aberration Split-Plot Fractional Factorial with FrF2

	brary(FrF	
		2(16,6, WPs = 4, nfac.WP = 3, factor.names = c("A", "B", "C", "P", "Q", "R"))
	int(SPFF2	
		no.std.rp A B C P Q R
1		12.3.4 1 -1 -1 1 1 1
2		9.3.1 1 -1 -1 -1 -1 1
3	3	11.3.3 1 -1 -1 1 -1 -1
4	4	10.3.2 1 -1 -1 -1 1 -1
ru	n.no run.	no.std.rp A B C P Q R
5	5	14.4.2 1 1 1 -1 1 -1
6	6	16.4.4 1 1 1 1 1 1
7	7	15.4.3 1 1 1 1 -1 -1
8	8	13.4.1 1 1 1 -1 -1 1
r	un.no run	.no.std.rp A B C P O R
9	9	5.2.1 -1 1 -1 -1 -1 -1
10	10	7.2.3 -1 1 -1 1 -1 1
11	11	8.2.4 -1 1 -1 1 1 -1
12	12	6.2.2 -1 1 -1 -1 1 1
r	un.no run	no.std.rp A BC P Q R
13	13	4.1.4 -1 -1 1 1 1 -1
14	14	2.1.2 -1 -1 1 -1 1 1
15	15	1.1.1 -1 -1 1 -1 -1 -1
16	16	3.1.3 -1 -1 1 1 -1 1
		type= FrF2.splitplot
		run.no and run.no.std.rp are annotation, not part of the data frame
NULE	· corumna	funno and funno.std.ip are annotation, not part of the data frame

- 4 同 ト 4 ヨ ト 4 ヨ ト

Checking the Alias Pattern

```
> y<-rnorm(16,0,1)
> aliases(lm( y ~ (.)^3, data=SPFF2))
A = P:O:R = B:C
 B = A:C
 C = A:B
 P = A:O:R
O = A:P:R
R = A:P:O
A:P = Q:R = B:C:P
A:O = P:R = B:C:O
A:R = P:O = B:C:R
B:P = A:C:P = C:Q:R
B:O = A:C:O = C:P:R
B:R = A:C:R = C:P:O
C:P = A:B:P = B:O:R
C:O = A:B:O = B:P:R
C:R = A:B:R = B:P:O
```

(日)

3

 Introduction

 Half-Fractions of Two-Level Factorial Designs

 One-Quarter and Higher Fractions of Two-Level Factorial Designs

 Criteria for Choosing Generators for Fractional Factorial Designs

 Augmenting Fractional Factorial Designs

 Plackett-Burman and Model Robust Screening Designs

Analyzing a Split-Plot Fractional Factorial

8.5.2 Analysis of a Fractional Factorial Split-Plot

Table 8.10 Fractional Factorial Split-Plot Design for Gear Distortion

			Ρ	-	+	-	+	
Α	В	\mathbf{C}	Q	-	-	+	+	
-	-	-			х	х		
+	_	-		х			х	
-	+	-		х			х	
+	+	-			х	х		
-	-	+		х			х	
+	-	+			х	х		
-	+	+			х	х		
+	$^+$	+		х			х	

The defining relation is I = ABCPQ, and the response was the dishing of the gears.

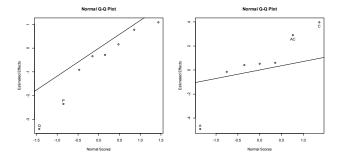
< 日 > < 同 > < 三 > < 三 >

Whole-Plot and Sub-Plot Effects

Table 8.11	Estimable	$E\!f\!fects$	for	Gear	Distortion	Experiment
--------------	-----------	---------------	-----	------	------------	------------

Whole-Plot	Sub-Plot
Effects	Effects
A + BCPQ	P + ABCQ
B + ACPQ	Q + ABCP
C + ABPQ	AP + BCQ
AB + CPQ	AQ + BCP
AC + BPQ	BP + ACQ
BC + APQ	BQ + ACP
ABC + PQ	CP + ABQ
	CQ + ABP

・ロト ・同ト ・ヨト ・ヨト


Analysis with R

		<pre>> spexp <- FrF2(16,5,WPs=8,nfac.WP=3, factor.names=c(*A*,*B*,*C*,*P*,*Q*),randomize=FALSE) > y<-c(18.0,21.5,27.5,17.0,22.5,15.0,19.0,22.0,13.0,-4.5,17.5,14.5,0.5,5.5,24.0,13.5) > sol<-in(-y-A+B*C*D*Q, data=spexp) > summary(sol)</pre>									
)										
		Residuals: ALL 16 residuals are 0: no residual degrees of freedom!									
		Coefficients: (16 not defined because of singularities)									
			Estimate Std	. Error t	value Pr	(> t)					
	1	(Intercept)	15.4062	NA	NA	NA					
	→ 2	Al	-4.9063	NA	NA	NA					
	→ ³	Bl	-0.1562	NA	NA	NA					
Whole	→ 4	Cl	3.9688	NA	NA	NA					
Plot	5	Pl	-2.3438	NA	NA	NA					
Effects	6	Ql	-3.4062	NA	NA	NA					
Enects	→ 7	A1:B1	0.5313	NA	NA	NA					
	→ 8	A1:C1	2.9063	NA	NA	NA					
	→ 9	B1:C1	0.4062	NA	NA	NA					
	10	A1:P1	-0.9063	NA	NA	NA					
	11	B1:P1	1.0938	NA	NA	NA					
	12	C1:P1	-0.2812	NA	NA	NA					
	13	Al:Q1	-0.3438	NA	NA	NA					
note:	14	B1:Q1	0.1563	NA	NA	NA					
ABC=PO	15	C1:Q1	0.7812	NA	NA	NA					
ABC-FQ	→ 16	P1:Q1	0.5938	NA	NA	NA					

<ロ> <同> <同> < 同> < 同>

Separate Normal Plots of Whole-Plot and Sub-Plot Effects

- > effects <-coef(sol)</pre>
- > Wpeffects <- effects[c(2:4, 7:9, 16)]
- > Speffects <- effects[c(5:6, 10:15)]
- > fullnormal(Speffects, names(Speffects), alpha=.20)
- > fullnormal(Wpeffects, names(Wpeffects), alpha=.10)

John Lawson FTC Short Course - Design and Analysis of Experiments with R

< ロ > < 同 > < 回 > < 回 >

Augmenting by Foldover

Design Augmen	ted by 2_{111}^{6-3}	Design	with Signs	Reversed	on	Factor .	B^{-}
---------------	------------------------	--------	------------	----------	----	----------	---------

Screening

Run	Α	В	\mathbf{C}	D	E	F	
1	-	-	-	+	+	+	
2	+	-	-	-	-	+	
3	-	+	-	-	+	-	
4	+	+	-	+	-	-	defining relation is
5	-	-	+	+	-	-	I = ABD = ACE = BCF = DEF = BCDE = ACDF = ABEF
6	+	-	+	-	+	-	I = ADD = ACE = DCT = DET = DCDE = ACDT = ADET.
7	-	+	+	-	-	+	D confounded with AB
8	+	+	+	+	+	+	
9	-	+	-	+	+	+	
10	+	+	-	-	-	+	
11	-	-	-	-	+	-	defining relation is
12	+	-	-	+	-	-	
13	-	+	+	+	-	-	I = -ABD = ACE = -BCF = DEF = -BCDE = ACDF = -ABEF
14	+	+	+	-	+	-	
15	-	-	+	-	-	+	
16	+	-	+	+	+	+	
							defining relation is B is clear and

defining relation is B is clear and I = ACE = DEF = ACDF D no longer confounded with AB

Augmenting the IOCS Experiment

```
> arsrm3<-fold.design(arsrm, columns='full')</pre>
```

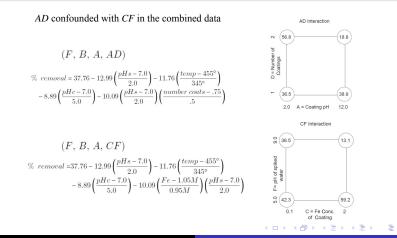
```
> y<-c(69.95,58.65,56.25,53.25,94.4,73.45,10.0,2.11,16.2,52.85,9.05,31.1,7.4,
```

Screening

```
+ 9.9, 10.85, 48.75)
```

```
> arsrm4<-add.response(arsrm3,y)</pre>
```

```
> arsrm4
```


```
A B
         C
               fold D
                        E
1 -1 -1 -1 original
                            69.95
   1 -1 -1 original -1 -1 1 58.65
        -1 original -1 1 -1 56.25
3
        -1 original 1 -1 -1 53.25
4
   1
        1 original 1 -1 -1 94.40
5
   -1 -1
         1 original -1 1 -1 73.45
6
   1 -1
         1 original -1 -1
7
   -1 1
                          1 10.00
8
   1
     1
        1 original
                    1
                       1
                          1
                             2.11
9
   1
      1
        1
             mirror -1 -1 -1 16.20
10 -1 1 1 mirror 1 1 -1 52.85
11
   1
     -1
        1 mirror
                    1 -1
                          1
                             9.05
12 -1 -1 1 mirror -1
                      1
                          1 31.10
     1 -1
13
   1
           mirror -1 1
                          1
                             7.40
14 -1 1 -1
             mirror
                    1 -1
                             9.90
   1 -1 -1
15
             mirror
                    1
                      1 -1 10 85
16 -1 -1 -1
             mirror -1 -1 -1 48.75
class=design, type= FrF2.generators.folded
```

Combining a resolution III design with a mirror image (signs reversed on all factors) results in a resolution IV design where no main effect is confounded with a two-factor interaction

< 日 > < 同 > < 三 > < 三 >

Alternative Explanations after Analysis of Combined Data

Screening

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Augmentation by Optimal Design

69.95 58.6556.2553.2594.4073.45Bo 10.00 β_{bl} 2.11BA , β= y =. X = 16.20 β_B -152.85 β_F 9.05 BAD 31.10BCF 7.40-1 0.00 10.8548.75Choose additional runs to maximize Additional runs to make /X'X/ i.e., D-optimal (Dykstra(1971)) X'X invertible

 $y = X\beta + \epsilon$

Screening

▲ □ ► < □ ►</p>

-

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Change Factors to Numeric in New Data Frame

Screening

```
> A <- (as.numeric(arsrm3$A)-1.5)/.5
       (as.numeric(arsrm3$B)-1.5)/.5
    <- (as.numeric(arsrm3$C)-1.5)/.5
> D <- (as.numeric(arsrm3$D)-1.5)/.5</p>
    <- (as.numeric(arsrm3$E)-1.5)/.5
    <- (as.numeric(arsrm3$F)-1.5)/.5
> Block<-arsrm3$fold
> augmn<-data.frame(A,B,C,D,E,F,Block)
> augmn
    Ά
       B
                 E
                         Block
                    1 original
         -1
            -1 -1
                    1 original
3
                   -1 original
4
                   -1 original
                -1 -1 original
6
                   -1 original
                    1
                      original
                    1 original
8
9
                        mirror
10
                        mirror
                        mirror
                    1
12
   - 1
                        mirror
13
            - 1
                    1
                        mirror
                 1
14
                -1
                        mirror
15
                   -1
                        mirror
                 1
16 -1 -1 -1 -1 -1 -1
                        mirror
```

< 日 > < 同 > < 三 > < 三 >

Screening

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Use Federov Algorithm in AlgDesign Package to Find 8 Additional Runs that Maximize the Determinant

```
> library(AlgDesign)
> cand<-gen.factorial(levels = 2, nVar = 6, varNames = c("A", "B", "C", "D", "E", "F"))</pre>
> Block<-rep('cand',64)
> cand<-data.frame(A=cand$A, B=cand$B, C=cand$C, D=cand$D, E=cand$E, F=cand$F,
+ Block)
> all<-rbind(augmn, cand)</pre>
> fr < -1:16
> optim<-optFederov( ~ A + B + F + I(A*D) + I(C*F), data=all, nTrials =24,
+ criterion = "D", nRepeats =10, augment=TRUE, rows=fr)
> newruns<-optim$design[ 17:24, ]
> newruns
    ABC
            DE
                 F Block
18 1 -1 -1 -1 -1 -1 cand
23 -1 1 1 -1 -1 -1 cand
32
   1
      1 1 1 -1 -1 cand
43 -1 1 -1 1 1 -1 cand
49 -1 -1 -1 -1 -1 1 cand
      1 -1 1 -1 1 cand
60
   1
63 -1
      1
         1
           1 -1 1 cand
         1 -1 1 1
72
  1
      1
                     cand
```

< 日 > < 同 > < 三 > < 三 >

Screening Screening Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Plackett-Burman Designs Obtained by Cyclically Rotation

Tab	le 6.9 Factor Levels for First Run of Plackett-Burman Design
Run Size	Factor Levels
12	+ + - + + + + -
20	+ + + + + + - + - + + + -
24	+ + + + + - + - + + + - +

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Creating a PB Design with FrF2

```
> library(FrF2)
> pb( nruns = 12, randomize=FALSE)
          -1
                      1 - 1 - 1
1
    1
        1
                               -1
                                    1 - 1
2
   -1
                            -1
3
                 -1
                               -1
                                   -1 -1
4
                     -1
                                  -1 -1
5
              -1
                      1
                        -1
6
   -1
7
              -1
                               -1
8
                                1
                                   -1
              -1
9
                 -1
                     -1
                           -1
10
   -1
                 -1
                     -
                        -1
                               -1
11
                    -1 -1 -1
                                  -1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
class=design, type= pb
```

Screening

・ロト ・同ト ・ヨト ・ヨト

Screening Ar	ntroduction lalf-Fractions of Two-Level Factorial Designs Ine-Quarter and Higher Fractions of Two-Level Factorial Designs Triteria for Choosing Generators for Fractional Factorial Designs ugmenting Fractional Factorial Designs to Resolve Confounding lackett-Burman and Model Robust Screening Designs
--------------	--

Example use of a Plackett-Burman Design

Hunter et al. (1982) used a Plackett-Burman Design to study the fatigue life of weld-repaired castings.

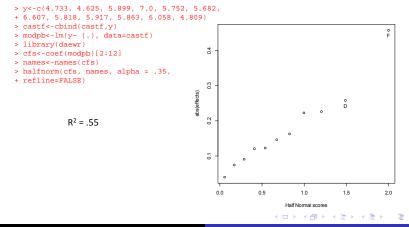
Run	A	В	\mathbf{C}	D	Е	\mathbf{F}	G	c8	c9	c10	c11	
1	+	-	+	+	+	-	-	-	+	-	+	4.733
2	-	+	+	+	-	-	-	+	_	+	+	4.625
3	+	+	+	-	-	-	+	-	+	+	-	5.899
4	+	+	-	-	-	+	-	+	+	-	+	7.000
5	+	_	-	-	+	-	+	+	-	+	+	5.752
6	-	-	-	+	-	+	+	-	+	+	+	5.682
7	-	-	+	-	+	+	-	+	+	+	-	6.607
8	-	+	-	+	+	-	+	+	+	-	-	5.818
9	+	-	+	+	-	+	+	+	-	-	-	5.917
10	-	+	+	-	+	+	+	_	_	-	+	5.863
11	+	+	-	+	+	+	-	+	-	+	-	6.058
12	-	-	-	-	-	-	-	-	-	-	-	4.809

Table 6.11 Design Matrix and Lifetime Data for Cast Fatigue Experiment

Note: This design is created using a different first row than FrF2 uses.

< ロ > < 同 > < 回 > < 回 >

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

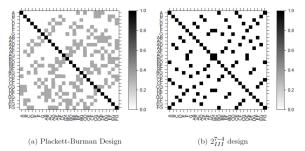

Recall the Design from the BsMD package

```
> data( PB12Des, package = "BsMD" )
> colnames(PB12Des) <- c("c11", "c10", "c9", "c8", "G", "F", "E", "D", "C", "B", "A")</pre>
> castf <- PB12Des[c(11,10,9,8,7,6,5,4,3,2,1)]</pre>
> castf
    Α
                            c8 c9 c10 c11
       -1
1
    1
            1
2
   -1
        1
                                -1
                                      1
                                           1
3
                                          -1
    1
                            -1
                                     -1
                                           1
4
                         _1
                                 1
                                -1
                                      1
                                           1
5
                     -1
                          1
                             1
6
                                      1
                                           1
7
                      1
                         -1
                              1
                                 1
                                      1
                                          -1
                              1
                                 1
                                     -1
                                          -1
8
   -1
                     -1
                          1
                                -1
9
                          1
                                     -1
                                          -1
10
                                     -1
                                           1
11
                                          -1
                                      1
12
   -1 -1 -1 -1 -1
                                     -1
                                          -1
                     -1 -1 -1 -1
```

・ロト ・同ト ・ヨト ・ヨト

Screening Screening Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Analysis Shows only Factor F Possibly Significant



John Lawson FTC Short Course - Design and Analysis of Experiments with R

Screening Screening Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Partially Confounded Main Effects Allows Estimation of Some Interactions by Regression

Figure 6.13 Color Map Comparison of Confounding between PB and FF Designs

John Lawson FTC Short Course - Design and Analysis of Experiments with R

< ロ > < 同 > < 回 > < 回 >

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Jones and Nachtsheim(2011) Propose a Forward Stepwise Regression Algorithm Guided by *Effect Heredity*

- Model matrix includes main effects and two-factor interactions
- When an interaction enters as the next term in the model, main effects involved in that interaction are included to preserve effect heredity

Screening

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

istep, fstep, bstep Functions in daewr Package Perform this Algorithm - FG interaction first term entered

```
> des<-castf[ , c(1:7)]
> y<-castf[ ,12]
> library(daewr)
> trm<-ihstep(y,des)</pre>
Call:
lm(formula = v \sim (.), data = d1)
Residuals:
    Min
              10 Median
                                30
                                        Max
-0.49700 -0.07758 0.02650 0.07867 0.44500
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.73025 0.07260 78.930 7.4e-13 ***
F
            0.45758 0.07260 6.303 0.000232 ***
G
           0.09158 0.07260 1.261 0.242669
F.G
           -0.45875 0.07260 -6.319 0.000228 ***
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2515 on 8 degrees of freedom
Multiple R-squared: 0.9104, Adjusted R-squared: 0.8767
F-statistic: 27.08 on 3 and 8 DF, p-value: 0.0001531
```

(日) (同) (日) (日) (日)

Screening Screen	
--	--

This Interaction was Detected with Forward Stepwise Regression

Factor F	Fact	or G
	-	+
	4.733	5.899
-	4.625	5.752
	4.809	5.818
	6.058	5.682
+	7.000	5.917
	6.607	5.863
	Factor F - +	$ \begin{array}{c} - \\ 4.733 \\ - \\ 4.625 \\ 4.809 \\ + \\ 7.000 \end{array} $

Table 6.13 Summary of Data from Cast Fatigue Experiment

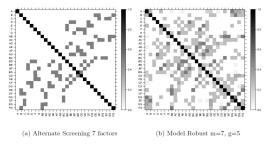
Screening	Introduction HalF-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs
Screening	Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding

Alternative to Plackett-Burman when 16 Runs Needed

Jones and Montgomery (2010) have proposed alternate 16-run screening designs for 6, 7, and 8 factors

Alternative to Plackett-Burman when 16 Runs Needed

Li and Nachtsheim (2000) also developed 8-, 12-, and 16-run model robust screening designs.


```
> library(daewr)
> MR8 <- ModelRobust('MR8m5g2', randomize = FALSE)
> head(MR8)
A B C D E
1 -1 1 1 1 -1
2 -1 -1 -1 -1 -1
3 -1 1 -1 -1 1
4 1 1 1 1 1
5 1 1 -1 1 1
5 1 1 -1 1 1
```

Screening

Introduction Half-Fractions of Two-Level Factorial Designs One-Quarter and Higher Fractions of Two-Level Factorial Designs Criteria for Choosing Generators for Fractional Factorial Designs Augmenting Fractional Factorial Designs to Resolve Confounding Plackett-Burman and Model Robust Screening Designs

Main Effects Partially Confounded with Two-Factor Interactions in These Designs

Figure 6.16 Color Map Comparison of Confounding between Alternate Screening and Model Robust Designs

Optimization

Part VI

Experimenting to Find Optima

John Lawson FTC Short Course - Design and Analysis of Experiments with R

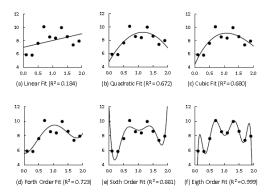
伺 ト イヨト イヨト

э

Outline of Part VI

6 Experimenting to Find Optima

- Introduction
- The Quadratic Response Surface Model
- Design Criteria
- Standard Designs for Second Order Models
- Non-standard Designs
- Fitting the Response Surface Model
- Determining Optimum Conditions
- Split-Plot Response Surface Designs
- Screening to Optimization


Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Response Surface Methods–A Package of Statistical Design and Analysis Tools

- Design and collection of data to fit an equation to approximate the relationship between factors and responses
- Q Regression analysis to fit a model to describe the data
- Examination of the fitted relationship through graphical and numerical techniques

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Power Series Models to Approximate Relationships

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Second Order Taylor Series Expansion

10.2.1 Empirical Quadratic Model

f

$$y = f(x_1, x_2) + \epsilon \tag{10.1}$$

$$\begin{split} (x_1, x_2) &\approx f(x_{10}, x_{20}) + (x_1 - x_{10}) \frac{\partial f(x_1, x_2)}{\partial x_1} \Big|_{x_1 = x_{10}, x_2 = x_{20}} \\ &+ (x_2 - x_{20}) \frac{\partial f(x_1, x_2)}{\partial x_2} \Big|_{x_1 = x_{10}, x_2 = x_{20}} \\ &+ \frac{(x_1 - x_{10})^2}{2} \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \Big|_{x_1 = x_{10}, x_2 = x_{20}} \\ &+ \frac{(x_2 - x_{20})^2}{2} \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} \Big|_{x_1 = x_{10}, x_2 = x_{20}} \\ &+ \frac{(x_1 - x_{10})(x_2 - x_{20})}{2} \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \Big|_{x_1 = x_{10}, x_2 = x_{20}} \end{split}$$

John Lawson FTC Short Course - Design and Analysis of Experiments with R

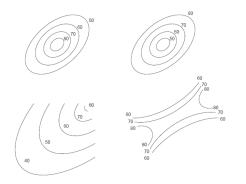
Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Results – The General Quadratic Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \epsilon$$

(10.3)

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

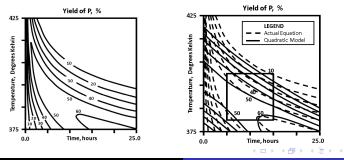

where $\beta_1 = \frac{\partial f(x_1, x_2)}{\partial x_1} \Big|_{x_1 = x_{10}, x_2 = x_{20}}$ etc. If the region of interest is of moderate

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i$$

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Possible Quadratic Surfaces

Figure 10.1 Surfaces That Can Be Described by General Quadratic Equation


Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Quadratic Models as Approximations

$$[P] = [R]_0 \frac{k_1}{k_1 - k_2} \{ \exp(-k_1 t) - \exp(-k_2 t) \}.$$

If k_1 and k_2 can be given as functions of temperature by the Arrhenius expressions:

 $k_1 = 0.5 \ exp \ [-10,000 \ (1/T - 1/400)]$ and $k_2 = 0.2 \ exp \ [-12,500 \ (1/T - 1/400)],$

John Lawson

FTC Short Course - Design and Analysis of Experiments with R

-

э

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Matrix Representation of the Quadratic Model

10.2.2 Design Considerations

Quadratic Model $\mathbf{y} = \mathbf{x}\mathbf{b} + \mathbf{x}'\mathbf{B}\mathbf{x} + \epsilon$ where $\mathbf{x}' = (1, x_1, x_2, \dots, x_k), \mathbf{b}' = (\beta_0, \beta_1, \dots, \beta_k)$ $\mathbf{B} = \begin{pmatrix} \beta_{11} & \beta_{12}/2 & \cdots & \beta_{1k}/2 \\ & \beta_{22} & \cdots & \beta_{2k}/2 \\ & & \ddots & \\ & & & \beta_{kk} \end{pmatrix}$

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Design Consideration for the Linear Model

Linear Model y = xb

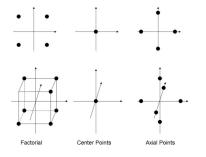
- the design points are chosen to minimize the variance of the fitted coefficients $\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$
- design points should be chosen such that $(\mathbf{X'X})$ matrix is diagonal like the 2^k 2^{k-p} designs diagonal elements of $(\mathbf{X'X})^{-1}$ minimized

伺 と く ヨ と く ヨ と … ヨ

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Design Consideration for the Quadratic Model

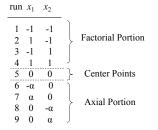
$$Var[\hat{y}(\mathbf{x})] = \sigma^2 \mathbf{x}' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}$$


- Goal is to equalize the variance of a predicted response over the region of interest
- Rotatable Design-variance of a predicted value is only a function of the distance from design center
- Uniform Precision Design-variance of predicted value is near equal within radius of one in coded factor units

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Central Composite Designs

10.3.1 Central Composite Design


Figure 10.2 Central Composite Design in Two and Three Dimensions

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

UP Property of Central Composite Designs

Central Composite Design

By choosing the distance from the origin to the axial points (α in coded units) equal to $\sqrt[4]{F}$ where F is the number of points in the factorial portion of the design, a central composite design will be rotatable. By choosing the correct number of center points the central composite design will have the uniform precision property.

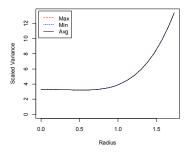
Optimizati	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization

Example of a Central Composite Design

run	x_1	x_2	x_3	Water/cement	Black Liq.	SNF	y
1	-1	-1	-1	0.330	0.120	0.080	109.5
2	1	-1	-1	0.350	0.120	0.080	120.0
3	-1	1	-1	0.330	0.180	0.080	110.5
4	1	1	-1	0.350	0.180	0.080	124.5
5	-1	-1	1	0.330	0.120	0.120	117.0
6	1	-1	1	0.350	0.120	0.120	130.0
7	-1	1	1	0.330	0.180	0.120	121.0
8	1	1	1	0.350	0.180	0.120	132.0
9	0	0	0	0.340	0.150	0.100	117.0
10	0	0	0	0.340	0.150	0.100	117.0
11	0	0	0	0.340	0.150	0.100	115.0
12	-1.68	0	0	0.323	0.150	0.100	109.5
13	1.68	0	0	0.357	0.150	0.100	132.0
14	0	-1.68	0	0.340	0.100	0.100	120.0
15	0	1.68	0	0.340	0.200	0.100	121.0
16	0	0	-1.68	0.340	0.150	0.066	115.0
17	0	0	1.68	0.340	0.150	0.134	127.0
18	0	0	0	0.340	0.150	0.100	116.0
19	0	0	0	0.340	0.150	0.100	117.0
20	0	0	0	0.340	0.150	0.100	117.0

Table 10.1 Central Composite Design in Coded and Actual Units for Cement Workability Experiment

(actual level - center value)/(half range)


 $\pm 1.68 = \sqrt[4]{8}$

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Variance Dispersion Graph Shows UP Characteristic

> library(dae	ewr)		
> data(cement			
> des<-cement	1, 2:41		
> library(Vdo	(raph)		
> Vdgraph(des	3)		
number of des	sign points= 20)	
number of fac	ctors= 3		
Rad	dius Maximum	Minimum	Average
[1,] 0.00000	0000 3.326805	3.326805	3.326805
[2,] 0.08660	0254 3.320828	3.320828	3.320828
[3,] 0.17320	3.303837	3.303837	3.303837
[4,] 0.25980	0762 3.278640	3.278640	3.278640
[5,] 0.34641	L016 3.249923	3.249923	3.249923
[6,] 0.43301	L270 3.224241	3.224241	3.224241
[7,] 0.51961	1524 3.210026	3.210026	3.210026
[8,] 0.60621	L778 3.217583	3.217583	3.217583
[9,] 0.69282	2032 3.259089	3.259089	3.259089
[10,] 0.77942	2286 3.348596	3.348596	3.348596
[11,] 0.86602	2540 3.502029	3.502029	3.502029
[12,] 0.95262	2794 3.737186	3.737186	3.737186
[13,] 1.03923	3048 4.073740	4.073740	4.073740
[14,] 1.12583	3302 4.533236	4.533236	4.533236
[15,] 1.21243	3557 5.139093	5.139093	5.139093
[16,] 1.29903		5.916603	
[17,] 1.38564	1065 6.892934	6.892934	6.892934
[18,] 1.47224			
[19,] 1.55884	1573 9.560089	9.560089	9.560089

Variance Dispersion Graph

FTC Short Course - Design and Analysis of Experiments with R

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
	Screening to Optimization

Creating a Central Composite Design in R

```
> library(rsm)
> rotd <- ccd(3, n0 = c(4,2), alpha = "rotatable", randomize = FALSE)
> rotd
   run.order std.order x1.as.is x2.as.is
                                               x3.as.is Block
                      1 -1.000000 -1.000000 -1.000000
2
            2
                         1.000000 -1.000000 -1.000000
                      2
3
            3
                      3 -1.000000
                                    1.000000 -1.000000
4
            4
                         1.000000
                                    1.000000 -1.000000
                                                             1
                      4
5
            5
                      5 -1.000000 -1.000000
                                               1.000000
6
            6
                         1.000000 -1.000000
                                               1.000000
                                                             1
                      6
7
            7
                      7 -1.000000
                                    1.000000
                                               1.000000
                                                             1
8
            8
                      8
                         1.000000
                                    1.000000
                                              1.000000
                                                             1
9
            9
                      9
                         0.000000
                                    0.000000
                                               0.000000
10
          10
                         0.000000
                                    0.000000
                     10
                                               0.000000
11
          11
                         0.000000
                                    0.000000
                                               0.000000
                                                             1
                     11
12
          12
                         0.000000
                                    0.000000
                                                             1
                     12
                                               0.000000
13
           1
                        -1.681793
                                    0.000000
                                               0.000000
                                                             2
                      1
            2
                         1.681793
                                                             2
14
                      2
                                    0.000000
                                               0.000000
15
            3
                      3
                         0.000000 -1.681793
                                               0.000000
                                                             2
16
            4
                         0.000000
                                    1.681793
                                                             2
                      4
                                               0.000000
17
            5
                      5
                         0.000000
                                    0.000000 -1.681793
                                                             2
18
            6
                      6
                         0.000000
                                    0.000000
                                               1.681793
                                                             2
19
            7
                      7
                         0.000000
                                    0.000000
                                               0.000000
                                                             2
            8
                                                             2
20
                      8
                         0.000000
                                    0.000000
                                               0.000000
```

- 《圖》 《문》 《문》

3

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Creating a Central Composite Design in R

```
> library(rsm)
```

```
> ccd.up<-ccd(y~x1+x2+x3,n0=c(4,2),alph="rotatable",coding=list(x1~(Temp-150)/10,</pre>
```

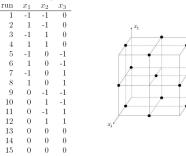
```
+ x2~(Press-50)/5,x3~(Rate-4)/1),randomize=FALSE)
```

```
> head(ccd.up)
```

run.order std.order Temp Press Rate y Block

1	1	1	140	45	3	NA	1
2	2	2	160	45	3	NA	1
3	3	3	140	55	3	NA	1
4	4	4	160	55	3	NA	1
5	5	5	140	45	5	NA	1
6	6	б	160	45	5	NA	1
6	6	6	160	45	5	NA	

```
Data are stored in coded form using these coding formulas ... x1 ~ (Temp - 150)/10 x2 ~ (Press - 50)/5 x3 ~ (Rate - 4)/1
```

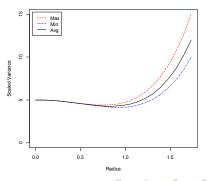

(日)

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Three Level Box-Behnken Designs

10.3.2 Box-Behnken Design

Table 10.2 Box-Behnken Design in Three Factors

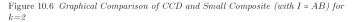


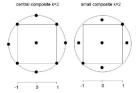
	The Quadratic Response Surface Model
	Design Criteria
	Standard Designs for Second Order Models
Optimization	Non-standard Designs
	Fitting the Response Surface Model
	Determining Optimum Conditions
	Split-Plot Response Surface Designs
	Screening to Optimization
	Screening to Optimization

Creating a Box-Behnken Design in R

» # groate design	with rom				
<pre>> # create design with rsm > library(rsm)</pre>					
<pre>> bbd3 <- bbd(3,1</pre>					
		FALSE, HU=5	,		
> library(Vdgrap)					
> Vdgraph(bbd3[
number of design		5			
number of factors					
	Maximum				
[1,] 0.00000000					
[2,] 0.08660254					
[3,] 0.17320508					
[4,] 0.25980762	4.867602	4.865070	4.866083		
[5,] 0.34641016	4.776000	4.768000	4.771200		
[6,] 0.43301270	4.672852	4.653320	4.661133		
[7,] 0.51961524	4.569125	4.528625	4.544825		
[8,] 0.60621778	4.478227	4.403195	4.433208		
[9,] 0.69282032	4.416000	4.288000	4.339200		
[10,] 0.77942286	4.400727	4.195695	4.277708		
[11,] 0.86602540	4.453125	4.140625	4.265625		
[12,] 0.95262794	4.596352	4.138820	4.321833		
[13,] 1.03923048	4.856000	4.208000	4.467200		
[14,] 1.12583302	5.260109	4.367570	4.724583		
[15,] 1.21243557	5.839134	4.638625	5.118825		
[16,] 1.29903811	6.625977	5.043945	5.676758		
[17,] 1.38564065	7.656000	5.608000	6.427200		
[18,] 1.47224319					
[19,] 1.55884573					
[20,] 1.64544827					
[21,] 1.73205081					

Variance Dispersion Graph




FTC Short Course - Design and Analysis of Experiments with R

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Small Composite Designs

10.3.3 Small Composite Design

▲ 同 ▶ → 三 ▶

-

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Ontimization
	Screening to Optimization

Hybrid Designs

10.3.4 Hybrid Design

Roquemore (1976) developed hybrid designs that require even fewer runs than the small composite designs. These designs were constructed by making a central composite design in k - 1 factors and adding a kth factor so that the **X'X** has certain properties and the design is near rotatable.

Table	10.4 Roq	uemore 3	210 Design
run	x_1	x_2	x_3
1	0	0	1.2906
2	0	0	-0.1360
3	-1	-1	0.6386
4	1	-1	0.6386
5	-1	1	0.6386
6	1	1	0.6386
7	1.736	0	-0.9273
8	-1.736	0	-0.9273
9	0	1.736	-0.9273
10	0	-1.736	-0.9273

< 日 > < 同 > < 三 > < 三 >

э

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs
	Screening to Optimization

Minimal Run Response Surface Designs Available in R package Vdgraph

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Comparing Two Designs with Vdgraph

```
> library(rsm)
```

```
> ccd.up<-ccd(y~x1+x2+x3,n0=c(4,2),alph="rotatable",coding=list(x1~(Temp-150)/10,</pre>
```

```
+ x2~(Press-50)/5,x3~(Rate-4)/1),randomize=FALSE)
```

```
> head(ccd.up)
```

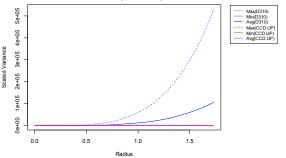
run.order std.order Temp Press Rate y Block

1	1	1	140	45	3	NA	1
2	2	2	160	45	3	NA	1
3	3	3	140	55	3	NA	1
4	4	4	160	55	3	NA	1
5	5	5	140	45	5	NA	1
6	6	6	160	45	5	NA	1

```
Data are stored in coded form using these coding formulas ... x1 ~ (Temp - 150)/10 x2 ~ (Press - 50)/5
```

```
x3 \sim (Rate - 4)/1
```

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---


Comparing Two Designs with Vdgraph

```
> library(Vdgraph)
> data(D310)
> D310
        x1
               x^2
                       x3
    0.0000 0.000 1.2906
    0.0000 0.000 -0.1360
2
3
   -1.0000 -1.000 0.6386
4
   1.0000 -1.000 0.6386
   -1.0000 1.000 0.6386
6
    1.0000 1.000 0.6386
7
    1.7636 0.000 -0.9273
8
   -1.7636 0.000 -0.9273
9
    0.0000 1.736 -0.9273
10 0.0000 -1.736 -0.9273
> des<-transform(D310,Temp=10*x1+150, Press=5*x2+50,Rate=x3+4)</pre>
> des
        x1
               x2
                             Temp Press
                       x_3
                                          Rate
    0.0000 0.000 1.2906 150.000 50.00 5.2906
2
    0.0000 0.000 -0.1360 150.000 50.00 3.8640
3
   -1.0000 -1.000 0.6386 140.000 45.00 4.6386
4
    1.0000 -1.000 0.6386 160.000 45.00 4.6386
   -1.0000 1.000
                   0.6386 140.000 55.00 4.6386
6
    1.0000 1.000
                   0.6386 160.000 55.00 4.6386
    1.7636 0.000 -0.9273 167.636 50.00 3.0727
8
   -1.7636 0.000 -0.9273 132.364 50.00 3.0727
    0.0000 1.736 -0.9273 150.000 58.68 3.0727
9
10
   0.0000 -1.736 -0.9273 150.000 41.32 3.0727
```

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Comparing Two Designs with Vdgraph

> Compare2Vdg(des[, 4:6],ccd.up[, 3:5],"D310","CCD.UP")

Variance Dispersion Graph

< 同 ▶

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Standard Designs Inappropriate in Some Situations

10.5 Non-Standard Response Surface Designs

Some design situations do not lend themselves to the use of standard response surface designs

- 1. Region of experimentation is irregularly shaped
- 2. Not all combinations of factor levels are feasible
- 3. There is a nonstandard linear or nonlinear model

Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization	
--	--

Irregular Design Regions

Example 1 - Irregularly shaped region

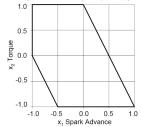
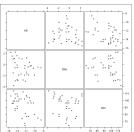


Figure 10.11 Experimental Region for Engine Experiment

э

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--


Finite Number of Possible Design Points

Example 2 - Finite number

of candidate points

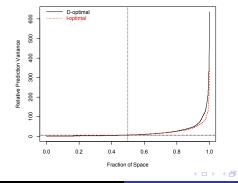
Figure 10.12 General Structure of Hydrozyphenylureas

Table 10.5 Library of Substituted Hydroxyphenglures Compounds

Comp-								
	ound	R	R'	R"	R ^m	HE	DMz	S0K
	1	Н	Н	Н	CH ₃	-12.221	-0.162	64.138
	2	Н	H	н	CH ₂ Ph	-14.015	-0.068	88,547
	3	H	H	н	Ph	-14.502	0.372	85.567
	- 4	H	H	н	$2CH_3OC_6H_4$	-14.893	1.035	96.053
	5	H	OCH ₃	H	CH ₃	-12.855	1.091	74.124
	6	Н	OCH ₃	н	CH ₂ Ph	-14.628	1.115	99.002
	7	Н	OCH ₃	н	Ph	-15.123	1.554	96,053
	8	Н	OCH ₃	н	$2CH_3OC_6H_4$	-15.492	2.221	106.607
	9	Н	OC_2H_5	н	CH ₃	-11.813	1.219	77.02
	10	Н	OC_2H_5	н	CH ₂ Ph	-13.593	1.188	101.978
	11	Н	OC_2H_5	н	Ph	-14.088		99.002
	12	CH_3	OC_2H_5	н	$2CH_3OC_6H_4$	-14.46	2.266	109.535
	13	CH_3	H	CH_3		-8.519	-0.56	71.949
	14	CH_3	H	CH_3	CH ₂ Ph	-10.287	-0.675	96.6
	15	CH_3	H	CH_3	Ph	-10.798	-0.134	96.62
	16	CH_3	H	CH_3	$2CH_3OC_6H_4$	-11.167		104.047
2	17	Н	Н	н	CH_3	-12.245	-0.609	67.054
	18	Н	Н	н	CH ₂ Ph	-13.98	-0.518	91.546
	19	Н	Н	н	Ph	-14.491	-0.561	88,547
	20	Н	Н	н	$2CH_3OC_6H_4$	-14.888	-1.478	99.002
	21	Н	OCH ₃	н	CH_3	-11.414	-1.888	77.02
	22	H	OCH_3	н	CH ₂ Ph	-13.121	-1.692	101.978
	23	H	OCH_3	н	Ph	-13.66	-1.893	99.002
	24	H	OCH_3	н	$2CH_3OC_6H_4$	-14.012	-2.714	109.535
	25	H	OC_2H_5	н	CH_3	-10.029	-1.891	79.942
	26	H	OC_2H_5	н	CH ₂ Ph	-11.74	-1.652	104.977
	27	H	OC_2H_5	н	Ph	-12.329	-1.902	101.978
	28	OCH ₃	OC_2H_5	н	$2CH_3OC_6H_4$	-12.637	-2.762	112.492
	29	OCH_3	OCH_3	н	CH_3	-12.118	-2.994	81.106
0	- 30	OCH_3	OCH_3	н	CH ₂ Ph	-13.892	-2.845	106.299
0	31	OCH_3	OCH_3	н	Ph	-14.456	-2.926	103.23
	- 32	OCH_3	OCH ₃	н	$2CH_3OC_6H_4$	-14.804	-3.78	113.856
	- 33	CH_3	H	CH_3	CH_3	-9.209	-0.423	74.871
	- 34	CH_3	H	CH_3	CH_2Ph	-10.97	-0.302	99.603
	35	CH_3	н	CH_3	Ph	-11.488	-0.453	96.6
	- 36	CH_3	H	CH_3	$2CH_3OC_6H_4$	-11.868	-1.322	107.01

John Lawson

Create the Design with optFederov function in AlgDesign


```
> library(daewr)
> data(gsar)
> librarv(AlgDesign)
> desgn1<-optFederov(~guad(.),data=gsar,nTrials=15,center=TRUE,</p>
                     criterion="D",nRepeats=40)
> desqn2<-optFederov(~quad(.),data=qsar,nTrials=15,center=TRUE,</pre>
                     criterion="I",nRepeats=40)
> desqn2$design
   Compound
                 HE
                        DMz
                                SOK
1
          1 -12.221 -0.162
                             64.138
4
          4 -14.893
                    1.035
                             96.053
9
          9 -11.813
                     1.219 77.020
12
         12 -14.460
                     2.266 109.535
13
         13 -8.519 -0.560
                           71.949
14
         14 -10.287 -0.675
                             96.600
16
         16 -11.167 0.418 104.047
19
         19 -14.491 -0.561
                            88.547
         22 -13.121 -1.692 101.978
28
         28 -12.637 -2.762 112.492
29
         29 -12.118 -2.994
                             81.106
32
         32 -14.804 -3.780 113.856
33
         33 -9.209 -0.423 74.871
34
         34 -10.970 -0.302 99.603
36
         36 -11.868 -1.322 107.010
```

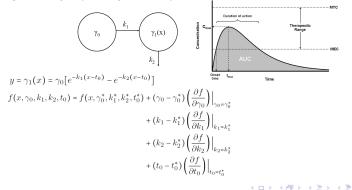
(日) (同) (三) (三)

Compare the D-Optimal and I-Optimal Designs for the Quadratic Model

> library(Vdgraph)

> Compare2FDS(desgn1\$design, desgn2\$design, "D-optimal", "I-optimal", mod=2)

John Lawson


FTC Short Course - Design and Analysis of Experiments with R

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
	Screening to Optimization

Known Non-Linear Model

Example 3 - Nonlinear model

Figure 10.14 Diagram of Two-Compartment Model for Tetracycline Metabolism

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Design Strategy

For the compartment model in Equation (10.7)

$$\begin{aligned} \frac{\partial f}{\partial \gamma_0} &= e^{-k_1(x-t_0)} - e^{-k_2(x-t_0)} \\ \frac{\partial f}{\partial k_1} &= -\gamma_0(x-t_0)e^{-k_1(x-t_0)} \\ \frac{\partial f}{\partial k_2} &= -\gamma_0(x-t_0)e^{-k_2(x-t_0)} \\ \frac{\partial f}{\partial t_0} &= \gamma_0 k_1 e^{-k_1(x-t_0)} - \gamma_0 k_2 e^{-k_2(x-t_0)} \end{aligned}$$

The strategy is to create a grid of candidates in the independent variable *x*, calculate the values of each of the four partial derivatives using initial guesses of the parameter values at each candidate point, and then use the optFederov function in the AlgDesign package to select a D-optimal subset of the grid.

・ロッ ・ 一 ・ ・ ヨッ・

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Create the Design in R

```
> k1 <- .15; k2 <- .72; gamma0 <- 2.65; t0 <- 0.41
> x < - c(seq(1:25))
> dfdk1 <- c(rep(0, 25))</pre>
> dfdk2 <- c(rep(0, 25))</pre>
> dfdgamma0 <- c(rep(0, 25))
> dfdt0 <- c(rep(0, 25))</pre>
> for (i in 1:25) {
+ dfdk1[i] <- -1 * qamma0 * exp(-k1 * (x[i] - t0)) * (x[i] - t0)
+ dfdk2[i] <-gamma0 * exp(-k2 * (x[i] - t0)) * (x[i] - t0)
+ dfdgamma0[i] <- \exp(-k1 * (x[i] - t0)) - \exp(-k2 * (x[i] - t0))
+ dfdt0[i] <- gamma0 * exp(-k1 * (x[i] - t0)) * k1 - gamma0 *
      \exp(-k2 * (x[i] - t0)) * k2;
+
> grid <- data.frame(x, dfdk1, dfdk2, dfdgamma0, dfdt0)</pre>
> library(AlgDesign)
> desgn2<-optFederov(~-1+dfdk1+dfdk2+dfdgamma0+dfdt0,data=grid,nTrials=4,center=TRUE,</p>
+ criterion="D",nRepeats=20)
> desqn2$design
          dfdk1
                       dfdk2 dfdgamma0
                                                dfdt.0
   x
  1 -1.431076 1.022374e+00 0.26140256 -0.883809267
1
  2 -3.319432 1.341105e+00 0.46952112 -0.294138728
2
5
   5 -6.110079 4.464802e-01 0.46562245 0.129639675
25 25 -1.629706 1.333237e-06 0.02500947 0.009941233
```

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Optimization Optimization Optimization Optimization Optimization Optimization Optimization Split-Plot Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--

Central Composite Design-Cement Grout

aona y	Experm	ieni					
run x_1 x_2 x_3		x_3	Water/cement	Black Liq.	SNF	y	
1	-1	-1	-1	0.330	0.120	0.080	109.5
2	1	-1	-1	0.350	0.120	0.080	120.0
3	-1	1	-1	0.330	0.180	0.080	110.5
4	1	1	-1	0.350	0.180	0.080	124.5
5	-1	-1	1	0.330	0.120	0.120	117.0
6	1	-1	1	0.350	0.120	0.120	130.0
7	-1	1	1	0.330	0.180	0.120	121.0
8	1	1	1	0.350	0.180	0.120	132.0
9	0	0	0	0.340	0.150	0.100	117.0
10	0	0	0	0.340	0.150	0.100	117.0
11	0	0	0	0.340	0.150	0.100	115.0
12	-1.68	0	0	0.323	0.150	0.100	109.5
13	1.68	0	0	0.357	0.150	0.100	132.0
14	0	-1.68	0	0.340	0.100	0.100	120.0
15	0	1.68	0	0.340	0.200	0.100	121.0
16	0	0	-1.68	0.340	0.150	0.066	115.0
17	0	0	1.68	0.340	0.150	0.134	127.0
18	0	0	0	0.340	0.150	0.100	116.0
19	0	0	0	0.340	0.150	0.100	117.0
20	0	0	0	0.340	0.150	0.100	117.0

Table 10.1 Central Composite Design in Coded and Actual Units for Cement Workability Experiment

(actual level - center value)/(half range)

 $\pm 1.68 = \sqrt[4]{8}$

Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs
Split-Plot Response Surface Designs Screening to Optimization

Central Composite Design-Cement Grout

<pre>> dta(cement) > cement S = dta(cement) > cement Block MarCem BlackL SNF y 1.1 0.3300000.0.12000000 0.08000000 117.0 0.3 0.0300000 0.18000000 0.08000000 120.0 0.10 0.3300000 0.18000000 0.02000000 120.0 0.10 0.3300000 0.12000000 120.0 0.10 0.3300000 0.12000000 120.0 0.10 0.3300000 0.12000000 120.0 0.10 0.3300000 0.12000000 120.0 0.10 0.3300000 0.12000000 120.0 0.10 0.3300000 0.18000000 0.12000000 120.0 0.10 0.3300000 0.18000000 0.12000000 120.0 0.10 0.3300000 0.18000000 0.12000000 120.0 0.10 0.3400000 0.18000000 0.12000000 120.0 0.10 0.3400000 0.15000000 0.10000000 117.0 0.11 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3300000 0.15000000 0.10000000 115.0 0.21 0 0.3300000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 115.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0 0.3400000 0.15000000 0.10000000 117.0 0.21 0.0300000 0.15000000 0.10000000 117.0 0.21 0.0300000 0.15000000 0.10000000 117.0 0.21 0.0300000 0.15000000 0.10000000 117.0 0.21 0.0300000 0.15000000 0.10000000 117.0 0.21 0.0300000 0.15000000 0.10000000 117.0 0.21 0.0300000 0.15000000 0.1000000</pre>		rary(da						
Block WatCem BlackL SNF y Cl.1 0.3300000 0.12000000 0.0800000 109.5 Cl.2 1 0.3300000 0.8000000 117.6 Cl.3 1 0.3300000 0.8000000 120.0 Cl.4 1 0.3300000 0.8000000 120.0 Cl.5 1 0.3300000 0.12000000 120.0 Cl.6 1 0.3300000 0.12000000 120.0 Cl.7 1 0.3300000 0.12000000 120.0 Cl.8 1 0.3300000 0.12000000 120.0 Cl.9 1 0.3400000 0.12000000 120.0 Cl.10 1 0.3400000 0.12000000 132.0 S2.1 2 0.3368179 0.15000000 10000001 120.0 S2.3 2 0.3400000 0.560414 150.0 plus centerpoints S2.4 2 0.3400000 0.560414 150.0 plus centerpoints			nt)					
Cl.1 1 0.3300000 0.1200000 0.0800000 109.5 Cl.2 1 0.3500000 0.1200000 0.08000000 117.0 Cl.3 1 0.3500000 0.18000000 0.08000000 110.5 Cl.4 1 0.3500000 0.18000000 0.08000000 120.0 Cl.5 1 0.3300000 0.12000000 0.1200000 120.0 Cl.6 1 0.3500000 0.18000000 0.1200000 120.0 Cl.7 1 0.3300000 0.18000000 0.1200000 124.0 Cl.9 1 0.3400000 0.15000000 0.1000000 117.0 Cl.10 1 0.3400000 0.15000000 0.1000000 117.0 Cl.11 1 0.3400000 0.15000000 0.1000000 117.0 S2.1 2 0.3321821 0.1500000 0.1000000 115.0 S2.2 2 0.3460100 0.05654614 115.0 S2.4 2 0.3400000 0.05654614 115.0 S2.5 2 0.3400000 0.15000000 0.06654614 115.0 S2.5 2 0.3400000 0.15000000 0.06654614 115.0 S2.6 2 0.3400000 0.15000000 0.10000000 117.0 S2.7 2 0.3400000 0.15000000 0.06654614 15.0 S2.8 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem - 0.34)/0.01 x2 ~ (ElactL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02	> cem		11. h G	D 11-7				
Cl.2 1 0.3500000 0.1200000 0.0800000 110.5 Cl.3 1 0.3500000 0.18000000 0.0800000 121.0 Cl.5 1 0.3500000 0.12000000 0.12000000 121.0 Cl.5 1 0.3300000 0.12000000 0.12000000 120.0 Cl.7 1 0.3300000 0.12000000 120.0 Factorial plus Cl.7 1 0.3300000 0.12000000 120.0 Centerpoints Cl.8 1 0.3400000 0.12000000 17.0 Cl.10 1 Cl.10 1 0.3400000 0.15000000 0.12000000 17.0 Cl.11 1 0.3400000 0.15000000 0.10000000 17.0 S2.1 2 0.3460100 0.0954522 0.10000001 12.0 Axial points S2.5 2 0.3400000 0.15000000 0.6654614 15.0 plus centerpoints S2.7 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 S2.8 2 0.3400000 0.15000000 0.10000000117.0	a1 1							
Cl.3 1 0.330000 0.1800000 0.0800000 121.0 Cl.5 1 0.350000 0.1800000 0.0800000 121.0 Cl.5 1 0.350000 0.1200000 0.1200000 120.0 Cl.6 1 0.350000 0.1200000 0.1200000 124.0 centerpoints Cl.9 1 0.340000 0.1500000 0.1000000 17.0 Cl.10 1 0.340000 0.1500000 0.1000000 17.0 Cl.11 1 0.340000 0.1500000 0.1000000 117.0 Cl.11 1 0.340000 0.1500000 0.1000000 117.0 S2.1 2 0.3231821 0.1500000 0.1000000 120.0 S2.4 2 0.340000 0.055622 0.1000000 120.0 S2.5 2 0.340000 0.055622 0.1000000 120.0 S2.4 2 0.340000 0.0500000 0.1000000 120.0 S2.5 2 0.340000 0.0500000 0.1000000 120.0 S2.4 2 0.340000 0.0500000 0.1000000 120.0 S2.5 2 0.3400000 0.15000000 0.1000000 120.0 S2.6 2 0.3400000 0.15000000 0.133386 127.0 S2.7 2 0.3400000 0.15000000 0.1000000 117.0 S2.8 2 0.3400000 0.15000000 0.1000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02								
Cl.4 1 0.3500000 0.18000000 0.2000000 121.0 Cl.5 1 0.3500000 0.12000000 0.12000000 120.0 Cl.6 1 0.3500000 0.12000000 0.12000000 130.0 Factorial plus Cl.7 1 0.3300000 0.18000000 0.12000000 132.0 centerpoints Cl.9 1 0.3400000 0.18000000 0.12000000 17.0 cl.1 Cl.10 1 0.3400000 0.16000000 17.0 cl.1 cl.9 0.3301000 0.10000000 17.0 Cl.11 1 0.3400000 0.15000000 0.10000000 132.0 S2.1 2 0.3566179 0.15000000 0.10000000 120.0 S2.3 2 0.3400000 0.0954622 0.10000000 120.0 Axial points plus centerpoints S2.4 2 0.3400000 0.15000000 0.10000000 117.0 S2.4 2 0.3400000 0.15000000 0.10000000 117.0 S2.7 2 0.3400000 0.15000000 0.10000000 117.								
C1.5 1 0.3300000 0.1200000 120.0 Factorial plus C1.6 1 0.3500000 0.12000000 12000000 1200000 12000000								
Cl. 6 1 0.3500000 0.1200000 130.00 Factorial plus Cl. 7 1 0.3300000 0.1800000 0.1200000 132.0 centerpoints Cl. 8 1 0.3500000 0.18000000 0.1200000 132.0 centerpoints Cl. 9 1 0.3400000 0.15000000 0.1000000 117.0 Cl. 10 1 0.3400000 0.15000000 0.1000000 117.0 Cl. 11 1 0.3400000 0.15000000 0.10000001 12.0 S2.1 2 0.356179 0.15000000 0.10000001 12.0 S2.3 2 0.3400000 0.0954622 0.10000001 12.0 S2.4 2 0.3400000 0.0954532 0.10000001 12.0 S2.4 2 0.3400000 0.15000000 12.0 Axial points S2.5 2 0.3400000 0.15000000 0.10000001 17.0 S2.7 2 0.3400000 0.15000000 <th0.1000000117.0< th=""> 22.9</th0.1000000117.0<>								
C1.7 1 0.3300000 0.18000000 0.12000000 124.0 centerpoints C1.8 1 0.3500000 0.18000000 0.12000000 132.0 C1.9 1 0.3400000 0.15000000 0.1000000 17.0 C1.11 1 0.3400000 0.15000000 0.1000000 17.0 C1.11 0.3400000 0.15000000 0.10000000 19.5 S2.1 2 0.356170 0.15000000 0.10000000 120.0 S2.1 2 0.3400000 0.10000000 120.0 32.3 S2.2 2 0.3400000 0.20045378 0.10000000 121.0 S2.4 2 0.3400000 0.20045378 0.10000000 121.0 S2.5 2 0.3400000 0.15000000 0.10000000 150.0 S2.7 2 0.3400000 0.15000000 0.10000000 17.0 S2.8 2 0.3400000 0.15000000 0.10000000 17.0 S2.8 2 0.3400000 0.15000000 0.10000000 17.0 Data are stored							Factorial plus	
Cl.8 1 0.3500000 0.1800000 0.1200000 132.0 Cl.9 1 0.3400000 0.15000000 0.1000000 117.0 Cl.11 1 0.3400000 0.15000000 0.10000001 117.0 Cl.11 2 0.3201821 0.15000000 0.10000000 109.5 S2.2 2 0.33658179 0.15000000 0.10000000 120.0 S2.3 2 0.3400000 0.09954622 0.10000000 120.0 S2.4 2 0.3400000 0.09954622 0.10000000 120.0 S2.5 2 0.3400000 0.15000000 0.6656414 15.0 plus centerpoints S2.6 2 0.3400000 0.15000000 0.10000001 16.0 S2.8 2 0.3400000 0.15000000 0.10000001 17.0 S2.9 2 0.3400000 0.15000000 0.10000001 17.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas xl ~ (WatCem - 0.34)/0.01 x2 ~ (ElactL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02								
C1.9 1 0.3400000 0.15000000 0.10000000 117.0 C1.10 1 0.3400000 0.15000000 0.10000000 115.0 S2.1 2 0.3231821 0.15000000 0.10000000 115.0 S2.2 2 0.356170 0.15000000 0.10000000 120.0 S2.3 2 0.3400000 0.20045784 0.10000000 120.0 S2.4 2 0.3400000 0.15000000 0.16000000 120.0 S2.4 2 0.3400000 0.15000000 0.16064614 115.0 plus centerpoints S2.5 2 0.3400000 0.15000000 0.13636964 117.0 S2.4 2 0.3400000 0.15000000 0.13636964 17.0 S2.5 2 0.3400000 0.15000000 0.13636964 17.0 S2.8 2 0.3400000 0.15000000 10000000 17.0 S2.9 2 0.3400000 0.15000000 10000000 17.0 Data are stored in coded form using these coding formulas x1 ~ (MatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.0							centerpoints	
C1.10 1 0.3400000 0.1500000 0.1000000 117.0 C1.11 1 0.3400000 0.1500000 0.01000000 105.5 S2.1 2 0.3231821 0.15000000 0.10000000 109.5 S2.2 2 0.340000 0.0994422 0.1000000 120.0 S2.4 2 0.3400000 0.0994422 0.1000000 120.0 S2.5 2 0.3400000 0.0994422 0.0663641 415.0 plus centerpoints S2.6 2 0.3400000 0.1500000 0.0663641 415.0 plus centerpoints S2.7 2 0.3400000 0.1500000 0.1000000 117.0 S2.8 2 0.3400000 0.1500000 0.1000000 117.0 S2.9 2 0.3400000 0.1500000 0.10000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem - 0.34)/0.01 x3 ~ (SNF - 0.1)/0.02								
C1.11 1.0.3400000 0.15000000 0.10000000 115.0 S2.1 2.0.3251190 0.15000000 0.10000000 109.5 S2.2 2.0.3368179 0.15000000 0.10000000 132.0 S2.3 2.0.3400000 0.02045378 0.10000000 120.0 S2.4 2.0.3400000 0.20045378 0.10000000 121.0 S2.5 2.0.3400000 0.15000000 0.1363586127.0 plus centerpoints S2.6 2.0.3400000 0.15000000 0.1363586127.0 S2.7 2.0.3400000 0.15000000 117.0 S2.7 2.0.3400000 0.15000000 0.10000000 117.0 S2.8 2.0.3400000 0.15000000 10000000 117.0 S2.9 2.0.3400000 0.15000000 10000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02 3 SN - 0.1)/0.02 SN - 0.1								
S2.1 2 0.3231821 0.1500000 0.1000000 109.5 S2.2 2 0.3568179 0.1500000 0.1000000 120.0 S2.3 2 0.3400000 0.09954622 0.1000000 120.0 S2.4 2 0.3400000 0.0663641 115.0 plus centerpoints S2.5 2 0.3400000 0.15000000 0.1000000 117.0 S2.7 2 0.3400000 0.15000000 0.10000000 117.0 S2.8 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 0.3400000 0.15000000 1.0000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem ~ 0.34)/0.01 x2 ~ (BlackL ~ 0.15)/0.03 x3 ~ (SNF ~ 0.1)/0.02								
S2.2 2 0.3568179 0.1500000 0.10000000 132.0 S2.3 2 0.3400000 0.09954622 0.10000000 122.0 Axial points S2.4 2 0.3400000 0.20045378 0.10000000 121.0 Axial points S2.5 2 0.3400000 0.15000000 0.1363386 127.0 plus centerpoints S2.6 2 0.3400000 0.15000000 0.1363386 127.0 S2.7 2 0.3400000 0.1303086 127.0 S2.7 2 0.3400000 0.15000000 0.10000000 117.0 S2.8 2 0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02								
S2.3 2 0.3400000 0.09954622 0.1000000 120.0 S2.4 2 0.3400000 0.20045378 0.1000000 121.0 Axial points S2.5 2 0.3400000 0.15000000 0.06636414 115.0 plus centerpoints S2.6 2 0.3400000 0.15000000 0.06636414 115.0 plus centerpoints S2.7 2 0.3400000 0.15000000 0.1000000 117.0 S2.8 2 0.3400000 0.15000000 0.1000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02								
s2.4 2 0.3400000 0.2004\$378 0.1000000 121.0 Axial points s2.5 2 0.3400000 0.15000000 0.6663614 plus centerpoints s2.6 2 0.3400000 0.15000000 0.6663614 plus centerpoints s2.7 2 0.3400000 0.15000000 0.1000000 16.0 s2.8 2 0.3400000 0.15000000 0.10000000 117.0 s2.9 2 0.3400000 0.15000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (MatCem ~ 0.34)/0.01 x2 ~ (BlackL ~ 0.15)/0.03 x3 ~ (SHF ~ 0.1)/0.02								
S2.5 2 0.3400000 0.15000000 0.06636414 115.0 plus centerpoints S2.6 2 0.3400000 0.15000000 0.13363586 127.0 S2.7 2 0.3400000 0.15000000 0.10000000 16.0 S2.8 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 17.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL = 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02 - - -							Avial paints	
S2.6 2.0.3400000 0.15000000 0.1363386 127.0 protection S2.7 2.0.3400000 0.15000000 0.1000000 116.0 S2.8 2.0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (MatCem ~ 0.34)/0.01 x2 ~ (BlackL ~ 0.15)/0.03 x3 ~ (SHF ~ 0.1)/0.02 - - -								
<pre>S2.7 2 0.3400000 0.15000000 0.10000000 116.0 S2.8 2 0.3400000 0.15000000 0.10000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas x1 ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL = 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02</pre>							plus centerpoints	
<pre>S2.8 2 0.3400000 0.15000000 0.1000000 117.0 S2.9 2 0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas xl - (MatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SMF - 0.1)/0.02</pre>								
S2.9 2 0.3400000 0.15000000 0.10000000 117.0 Data are stored in coded form using these coding formulas xl ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02								
Data are stored in coded form using these coding formulas xl - (MatCem - 0.34)/0.01 x2 - (BlackL - 0.15)/0.03 x3 - (SNF - 0.1)/0.02								
xl ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02	S2.9	2	0.3400000	0.15000000	0.10000000	117.0		
xl ~ (WatCem - 0.34)/0.01 x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02	Dete		and in and		na theas a	adina fa		
x2 ~ (BlackL - 0.15)/0.03 x3 ~ (SNF - 0.1)/0.02					ing these co	Jaing 10	Jimulas	
x3 ~ (SNF - 0.1)/0.02								
				1.05				
	x3 ~	(SINF -	0.1/0.02				_	
							◆□▶ ◆舂♪	

	Introduction The Quadratic Response Surface Model Design Criteria
.	Standard Designs for Second Order Models
Optimization	Non-standard Designs
	Fitting the Response Surface Model
	Determining Optimum Conditions
	Split-Plot Response Surface Designs
	Screening to Optimization

Fit Linear Model–Block 1

```
> librarv(rsm)
> grout.lin <- rsm(y ~ SO(x1, x2, x3),data = cement, subset = (Block == 1))
Warning message:
In rsm(v \sim SO(x1, x2, x3)), data = cement, subset = (Block == 1)) :
  Some coefficients are aliased - cannot use 'rsm' methods.
  Returning an 'lm' object.
> anova(grout.lin)
Analysis of Variance Table
                                                                          Curvature
Response: y
                Df Sum Sg Mean Sg F value
                                             Pr(>F)
                3 465.13 155.042 80.3094 0.002307 **
FO(x1, x2, x3)
TWI(x1, x2, x3) 3 0.25 0.083 0.0432 0.985889
PQ(x1, x2, x3)
                1 37.88 37.879 19.6207 0.021377 *
Residuals
                    5.79
                                                                                                         Corner Point
                 3
                           1.931
                                                                                                         Average
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
                                                                                                         Center Point
>
                                                                                                         Average
```

< 日 > < 同 > < 三 > < 三 > .

Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs
Split-Plot Response Surface Designs Screening to Optimization

Fit Quadratic Model-All Data

```
> librarv(daewr)
> data(cement)
> grout, guad <- rsm(v ~ Block + SO(x1, x2, x3), data = cement)
> summary(grout.guad)
Call:
rsm(formula = y ~ Block + SO(x1, x2, x3), data = cement)
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
            1.1628e+02 1.0691e+00 108.7658 2.383e-15 ***
Block2
            4.4393e-01 1.0203e+00 0.4351
                                             0.67375
x1
            5.4068e+00 6.1057e-01 8.8553 9.746e-06 ***
x^2
            9.2860e-01 6.1057e-01 1.5209
                                             0.16262
            4.9925e+00 6.1057e-01
                                  8.1767 1.858e-05 ***
x3
x1:x2
            1.2500e-01 7.9775e-01
                                    0.1567 0.87895
x1:x3
           -1.3443e-14 7.9775e-01
                                    0.0000 1.00000
x2:x3
            1.2500e-01 7.9775e-01
                                    0.1567 0.87895
x1^2
            1.4135e+00 5.9582e-01
                                    2.3723 0.04175 *
x2^2
                                    2.2240
                                             0.05322 .
            1.3251e+00 5.9582e-01
x3^2
            1.5019e+00 5.9582e-01
                                    2.5207
                                             0.03273 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Multiple R-squared: 0.9473, Adjusted R-squared: 0.8887
F-statistic: 16.17 on 10 and 9 DF, p-value: 0.0001414
```

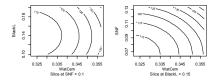
イロト イポト イヨト イヨト 三日

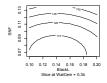
Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
Optimization	Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions

Fit Quadratic Model-All Data

```
Analysis of Variance Table
```

```
Response: y
```


	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Block	1	0.00	0.003	0.0006	0.98068
FO(x1, x2, x3)	3	751.41	250.471	49.1962	6.607e-06
TWI(x1, x2, x3)	3	0.25	0.083	0.0164	0.99693
PQ(x1, x2, x3)	3	71.45	23.817	4.6779	0.03106
Residuals	9	45.82	5.091		
Lack of fit	5	42.49	8.498	10.1972	0.02149
Pure error	4	3.33	0.833		


→ 3 → < 3</p>

Contour Plots of Fitted Surface

> library(rsm)

> contour(grout.guad, ~ x1+x2+x3)

<ロ> <同> <同> < 同> < 同>

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Perspective Plots of Fitted Surface

> par(mfrow=c(1,3))

> persp(grout.quad, ~ x1+x2+x3, zlab="Work", contours=list(z="bottom"))

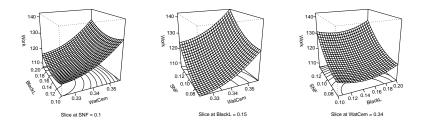
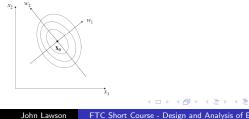


Image: A image: A

The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization	
---	--

Cannonical Analysis

10.7.2 Canonical Analysis


$$\mathbf{y} = \mathbf{x}\mathbf{b} + \mathbf{x}'\mathbf{B}\mathbf{x} + \epsilon$$
 where $\mathbf{x}' = (1, x_1, x_2, \dots, x_k), \mathbf{b}' = (\beta_0, \beta_1, \dots, \beta_k)$

$$\mathbf{B} = \begin{pmatrix} \beta_{11} & \beta_{12}/2 & \cdots & \beta_{1k}/2 \\ \beta_{22} & \cdots & \beta_{2k}/2 \\ & & \ddots & \\ & & & \ddots & \\ & & & & & \beta_{kk} \end{pmatrix}$$

Stationary point $\mathbf{x}_0 = -\hat{\mathbf{B}}^{-1}\hat{\mathbf{b}}/2$

Maximum? Minimum? or Saddlepoint?

Figure 10.18 Representation of Canonical System with Translated Origin and Rotated Axis

		Mod			
lo ons	rde lode ns sigr				

Cannonical Analysis

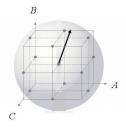
```
Stationary point of response surface:
        \mathbf{x}1
                   x^2
                               x3
-1.9045158 -0.1825251 -1.6544845
Stationary point in original units:
    WatCem
               BlackL
                              SNF
0.32095484 0.14452425 0.06691031
Eigenanalysis:
$values
[1] 1.525478 1.436349 1.278634
$vectors
        [,1]
                   [,2]
                               [,3]
x1 0.1934409 0.8924556 0.4075580
x2 0.3466186 0.3264506 -0.8793666
x3 0.9178432 -0.3113726 0.2461928
```

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization

10.7.3 Ridge Analysis maximum or minimum of $\mathbf{y} = \mathbf{xb} + \mathbf{x'Bx}$ subject to $\mathbf{x'x} = R^2$

Ridge Analysis

The solution is obtained in a reverse order using Lagrange multipliers. The resulting optimal coordinates are found to be the solution to the equation


$$(\mathbf{B} - \mu \mathbf{I}_{\mathbf{k}})\mathbf{x} = -\mathbf{b}/2. \tag{10.12}$$

同 ト イ ヨ ト イ ヨ ト

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization

Ridge Analysis

Figure 10.19 Path of Maximum Ridge Response Through Experimental Region

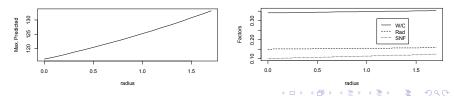
Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization

Calculations with rsm package

> ridge<-steepest(grout.quad, dist=seq(0, 1.7, by=.1),descent=FALSE)</pre>

Path of steepest ascent from ridge analysis:

> ridge


	dist	xl	x2	x3	L	WatCem	BlackL	SNF	L	yhat
1	0.0	0.000	0.000	0.000		0.34000	0.15000	0.10000		116.280
2	0.1	0.073	0.013	0.067		0.34073	0.15039	0.10134		117.036
3	0.2	0.145	0.026	0.135		0.34145	0.15078	0.10270		117.821
4	0.3	0.218	0.039	0.203		0.34218	0.15117	0.10406		118.641
5	0.4	0.290	0.053	0.270		0.34290	0.15159	0.10540		119.481
б	0.5	0.362	0.067	0.338		0.34362	0.15201	0.10676		120.355
7	0.6	0.434	0.082	0.406		0.34434	0.15246	0.10812		121.261
8	0.7	0.505	0.096	0.475		0.34505	0.15288	0.10950		122.194
9	0.8	0.577	0.112	0.543		0.34577	0.15336	0.11086		123.160
10	0.9	0.648	0.127	0.611		0.34648	0.15381	0.11222		124.147
11	1.0	0.719	0.143	0.680		0.34719	0.15429	0.11360		125.172
12	1.1	0.790	0.159	0.749		0.34790	0.15477	0.11498		126.227
13	1.2	0.861	0.176	0.818		0.34861	0.15528	0.11636		127.313
14	1.3	0.931	0.192	0.887		0.34931	0.15576	0.11774		128.419
15	1.4	1.001	0.209	0.956		0.35001	0.15627	0.11912		129.557
16	1.5	1.071	0.227	1.025		0.35071	0.15681	0.12050		130.725
17	1.6	1.141	0.244	1.095	Ĺ	0.35141	0.15732	0.12190		131.930
18	1.7	1.211	0.262	1.164	Ĺ	0.35211	0.15786	0.12328		133.158

(日) (同) (三) (三)

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Plotting the Ridge Trace with R

- > par (mfrow=c(2,1))
- > leg.txt<-c("W/C","Rad","SNF")</pre>
- > plot(ridge\$dist,ridge\$yhat, type="l",xlab="radius",ylab="Max. Predicted")
- > plot(ridge\$dist,seq(.10,.355,by=.015), type="n", xlab="radius", ylab="Factors")
- > lines(ridge\$dist,ridge\$WatCem,lty=1)
- > lines(ridge\$dist,ridge\$BlackL,lty=2)
- > lines(ridge\$dist,ridge\$SNF,lty=3)
- > legend(1.1,.31,leg.txt,lty=c(1,2,3))

John Lawson FTC Short Course - Design and Analysis of Experiments with R

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Split-Plot Response Surface Designs

Table	10.9 Data jor	Саке	DUKII	ід Ехретітені
	Oven run	x_1	x_2	y
	1	-1	-1	2.7
	1	-1	1	2.5
	1	-1	0	2.7
	2	1	-1	2.9
	2	1	1	1.3
	2	1	0	2.2
replicate blocks	$\int 3$	0	-1	3.7
with the same setting	3	0	1	2.9
for the whole plot	$\rightarrow \langle 4$	0	0	2.9
factor allow estimation	4	0	0	2.8
of σ_w^2	4	0	0	2.9
	~	Ĺ	— wh	ole plot factor is cons

Table 10.9 Data for Cake Baking Experiment

whole plot factor is constant within blocks

- 4 同 6 4 日 6 4 日 6

	Introduction The Quadratic Response Surface Model Design Criteria
Optimization	Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization

Fitting the Model with Ime4 package

```
> library(lme4)
Loading required package: Matrix
Loading required package: Rcpp
> library(daewr)
from 'package:lme4':
    cake
> data(cake)
> cake
   Ovenrun x1 x2
                   y x1sq x2sq
         1 -1 -1 2.7
1
                         1
2
         1 -1 1 2.5
                         1
3
           -1 0 2.7
                         1
                               0
         1
4
            1 - 1 2.9
                         1
                              1
         2
5
         2
            1 1 1.3
                         1
                              1
6
         2
            1 0 2.2
                         1
                              0
                              1
7
         3
            0 - 1 3.7
                         0
                              1
8
         3
            0 1 2.9
                         0
9
         4
            0 0 2.9
                         0
                              0
10
         4
            0 0 2.8
                         0
                               0
11
            0
              0 2.9
                         0
                              0
         4
> mmod <- lmer(y \sim x1 + x2 + x1:x2 + x1sq + x2sq + (1|Ovenrun), data=cake)
```

(日) (同) (三) (三)

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Differences in REML and Least Squares Estimates

Table 10.10 Comparison of Least Squares and REML Estimates for Split-Plot Response Surface Experiment

		Least Sq	uares (rsm	n function)	REMI	(lmer	function)
	Factor	$\hat{oldsymbol{eta}}$	$s_{\hat{eta}}$	P-value	$\hat{oldsymbol{eta}}$	$s_{\hat{eta}}$	P-value
	intercept	2.979	0.1000	<.001	3.1312	0.2667	0.054
Subplo	t x_1	-0.2500	0.0795	0.026	-0.2500	0.2656	0.399
factor	$\rightarrow x_2$	-0.4333	0.0795	0.003	-0.4333	0.0204	<.001
	x_{1}^{2}	-0.6974	0.1223	0.002	-0.6835	0.3758	0.143
	x_{2}^{2}	0.1526	0.1223	0.016	-0.0965	0.0432	0.089
	$x_1 x_2$	-0.3500	0.0973	0.268	-0.3500	0.0250	< .001
-					$\hat{\sigma}_{\omega}^2 = 0.1$	402, $\hat{\sigma}^2$	= 0.0025

.⊒ . ►

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	--

Estimation Equivalent Split-Plot RS Design (EESPRS)

	Least Sq	uares (rs	m function	REMI	(lmer	function)
Factor	$\hat{oldsymbol{eta}}$	$s_{\hat{eta}}$	P-value	$\hat{oldsymbol{eta}}$	$s_{\hat{eta}}$	P-value
intercept	2.979	0.1000	< .001	3.1312	0.2667	0.054
x_1	-0.2500	0.0795	0.026	-0.2500	0.2656	0.399
x_2	-0.4333	0.0795	0.003	-0.4333	0.0204	<.001
x_{1}^{2}	-0.6974	0.1223	0.002	-0.6835	0.3758	0.143
x_{2}^{2}	0.1526	0.1223	0.016	-0.0965	0.0432	0.089
$x_1 x_2$	-0.3500	0.0973	0.268	-0.3500	0.0250	< .001
				$\hat{\sigma}_{\omega}^2 = 0.1$	402, $\hat{\sigma}^2$	= 0.0025

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \qquad \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\omega} + \boldsymbol{\epsilon}$$
$$\hat{\boldsymbol{\beta}}_{LS} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \qquad \hat{\boldsymbol{\beta}}_{REML} = (\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\Sigma}^{-1}\mathbf{y}$$

EESPRS $\hat{\beta}_{LS} = \hat{\beta}_{REML}$ if $(\mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{J}\mathbf{X}) = \mathbf{0}_{n \times p}$

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Jones and Goos(2012) *D*-efficient (*EESPRS*)

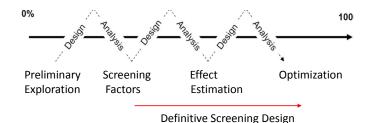
Table 10.15 daewr Functions for Recalling Jones and Goos's D-Efficient EESPRS Designs

	Number of	Number of
	Whole-Plot	Split-Plot
Function Name	Factors	Factors
EEw1s1	1	1
EEw1s2	1	2
EEw1s3	1	3
EEw2s1	2	1
EEw2s2	2	2
EEw2s3	2	2
EEw3	3	2 or 3

A 10

A B > A B >

	The Quadratic Response Surface Model
	Design Criteria
	Standard Designs for Second Order Models
Optimization	Non-standard Designs
	Fitting the Response Surface Model
	Determining Optimum Conditions
	Split-Plot Response Surface Designs
	Screening to Optimization


Creating a Design with daewr package

> library(d	aewr)		>	EEw	2s3	('EI	2211	7WI	(י9
> EEw2s3()				WP	wl	w2	s1	s2	s3
			1	1	1	1	-1	-1	1
Catalog of 1	D-efficient Es	stimation	2	1	1	1	1	-1	-1
Equivalent 1	RS		3	1	1	1	-1	1	-1
Designs f	or (2 wp facto	ors and 3 sp	4	2	0	1	0	1	-1
factors)			5	2	0	1	1	-1	1
			6	2	0	1	-1	0	0
Jones an	d Goos, JQT(2	012) pp. 363-374	7	3	-1	0	-1	1	0
			8	3	-1	0	1	-1	-1
Design Name	whole plots :	sub-plots/whole	9	3	-1	0	-1	-1	1
plot			10	4	1	-1	1	-1	1
			11	. 4	1	-1	-1	1	1
EE21R7WP	7	3	12	4	1	-1	1	1	-1
EE24R8WP	8	3	13	5	-1	1	-1	-1	-1
EE28R7WP	7	4	14	5	-1	1	1	1	0
EE32R8WP	8	4	15	5	-1	1	-1	1	1
EE35R7WP	7	5	16	6	1	0	0	0	1
EE40R8WP	8	5	17	6	1	0	1	1	1
EE42R7WP	7	6	18	6	1	0	-1	-1	-1
EE48R8WP	8	6	19	7	-1	-1	0	-1	0
			20	7	-1	-1	-1	0	-1
==> to retr	ieve a design	type	21	. 7	-1	-1	1	1	1
EE2w3s('EE2	lR7WP') etc.								

《口》《聞》《臣》《臣》

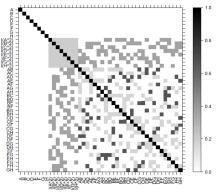
Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

One-Step Screening to Optimization

Jones and Nachtsheim(2011, 2013)

- 3-level designs
- 2k+1 runs for k factors

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---


Creating a Definitive Screening Design with daewr

>library(daewr) > DefScreen(8) Α В Η C D 0 -1 1 1 2 0 -1 1 -1 -1 -1 3 -1 1 4 1 -1 5 -1 6 1 7 _ 1 8 0 9 _1 _1 _1 1 11 - 1 12 - 1 -1 -1 0 - 1 13 - 1 1 14 - 1 _ 1 15 16 0 17 0 0 0

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Definitive Screening Designs Are Model Robust

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Example of a Definitive Screening Design

Table	13.2 Factors in the Definitive Screening Experiments of TiO ₂ Synthesis
Label	Factor
A	Speed of H_2O addition
В	Amount of H_2O
\mathbf{C}	Drying Time
D	Drying Temperature
\mathbf{E}	Calcination Ramp
F	Calcination Temperature
G	Calcination Time
Η	Dopant Amount

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Analysis using ihstep, fstep in daewr package

```
> des<-DefScreen(8)
> pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,</pre>
+ 8.1, 5.35)
> trm<-ihstep(pd,des)</pre>
Call:
lm(formula = v \sim (.), data = d1)
Residuals:
            10 Median
    Min
                             30
                                    Max
-5.0201 -0.8301 0.0814 1.0299 3.6799
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.2194
                         0.5140 14.045 4.89e-10 ***
                         0.5664 5.563 5.43e-05 ***
F
              3 1508
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 2.119 on 15 degrees of freedom
Multiple R-squared: 0.6735, Adjusted R-squared: 0.6518
F-statistic: 30.94 on 1 and 15 DF, p-value: 5.429e-05
```

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Analysis using ihstep, fstep in daewr package

```
> trm<- fhstep(pd, des, trm)</pre>
```

```
Call: lm(formula = y \sim (.), data = d2)
```

Residuals: <u>Min</u> 10 Median 30 Max -2.8341 -1.0214 -0.2049 0.5194 2.8378

```
Coefficients:
```

```
        Estimate Std. Error t value Pr(>|t|)

        (Intercept)
        5.0333
        1.0345
        4.865
        0.000309
        ***

        F
        3.1508
        0.4789
        6.579
        1.77e-05
        ***

        A
        0.7664
        0.4789
        1.600
        0.133553

        I.A.2.
        2.6545
        1.1400
        2.328
        0.036668 *

        ---
        Signif. codes:
        0 `***' 0.001 `**' 0.01 `**' 0.05 `.' 0.1 ` ' 1
```

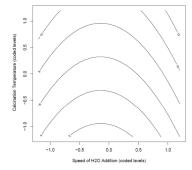
Residual standard error: 1.792 on 13 degrees of freedom Multiple R-squared: 0.7977, Adjusted R-squared: 0.751 F-statistic: 17.09 on 3 and 13 DF, p-value: 8.501e-05

イロト イポト イヨト イヨト

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization
--------------	---

Analysis using ihstep, fstep in daewr package

```
> trm <-fhstep(pd, des, trm)</pre>
Call:
lm(formula = v \sim (.), data = d2)
Residuals:
    Min
             10 Median
                             30
                                    Max
-2.8480 -0.6376 0.3167 0.6709 2.4451
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0333 0.9280 5.424 0.000154 ***
             3.1508 0.4296 7.335 9.04e-06 ***
F
            0.7664 0.4296 1.784 0.099715.
2.6545 1.0226 2.596 0.023407 *
Α
I.A.2.
             -0.8758 0.4296 -2.039 0.064137 .
С
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 1.607 on 12 degrees of freedom
Multiple R-squared: 0.8498, Adjusted R-squared: 0.7997
F-statistic: 16.97 on 4 and 12 DF, p-value: 7.013e-05
```


< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Optimization N Fi	troduction he Quadratic Response Surface Model esign Criteria andard Designs for Second Order Models on-standard Designs tting the Response Surface Model etermining Optimum Conditions olt-Plot Response Surface Designs
S	

Final Results

Pore Diameter = $5.0333 + 0.7664x_1 - 0.8758x_2 + 3.1508x_3 + 2.6545x_1^2$

イロト イ団ト イヨト イヨト

æ

Optimization	Introduction The Quadratic Response Surface Model Design Criteria Standard Designs for Second Order Models Non-standard Designs Fitting the Response Surface Model Determining Optimum Conditions Split-Plot Response Surface Designs Screening to Optimization

Recommendations for DSD (Jones)

- Add two dummy factors to create a design with 2k+4 runs for k factors
- Add replicate center points
- Analyze by first fitting the model that includes linear and quadratic main effects only (this leaves at least 4 df for error)
- Eliminate insignificant terms and fit the full quadratic model to the remaining terms