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@ Half-Fractions of Two-Level Factorial Designs
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Designs

@ Criteria for Choosing Generators for Fractional Factorial
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R Basics

A Short Description of R

@ R is the language of choice for a large and growing proportion
of people developing new statistical algorithms

@ R is available under GNU General Public License for Windows,
Mac OS X, and Linux

@ R is extendable with user submitted packages

@ The Comprehensive R Archive Network (CRAN) makes it easy
to benefit from others work, and share your own work and get
feedback for improvements

@ There are many user written packages available for the Design
and Analysis of Experiments
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Preliminaries
R Basics

Websites for Help Getting Started with R

@ The R Project for Statistical Computing
https://www.r-project.org

@ Getting Started with R
http://data.princeton.edu/R/

@ A Short Tutorial
http://math.usask.ca/"longhai/doc/others/R-tutorial.pdf

@ An Introductory pdf Manual can be Obtained Here
https://cran.r-project.org/doc/manuals/R-intro.pdf
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Preliminaries
R Basics

Websites for Help Getting Started with R

@ Installing and using R packages
http://math.usask.ca/“longhai/software/installrpkg.html

@ R Packages for Design an Analysis of Experiments

https://cran.r-project.org/web/views/
ExperimentalDesign.html
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Preliminaries
. P m Interface
R Basics

nd Data from The Book

Objects in R

During an R session R Creates Entities known as Objects
o Variables
@ Arrays of numbers
@ Character strings
e Functions

@ Data frames and other more complex elements built from
earlier components

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Preliminaries

Program Interface

R packages

Code and Data from The Book

R Basics

The R Console

RGui (64-bit) - olEN

Windows Help

R R Console [E=3 IR ==

Sidewalkr

Command line

prompt >

Type commands
and see text results
immediately

{Previously saved workspace restored]
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Preliminaries
. Program Interface
R Basics g

s
Data from The Book

Command line Examples

R e =

Expressions and

Assignments

Do calculations or
make assignments
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Preliminaries

Program Interface

R packages

Code and Data from The Book

R Basics

The R Script

R RGui (64-bit)

File | Edit View Misc Packages Windows Help

Source R code. H
New seript
Open script. | R Console
Display file(s
03-09) —- "Smooth Sidewalk"
Load Workspace.. )
R Foundation for Statistical Computing
SaveWorkspace. lingw32/x64 (64-bit)
Load History. | comes with ABSOLUTELY NO WARRANTY.
Sl et listribute 1t under certain condicions.
icence()' for distribution decails.
Change dir.
fport but zunning in an English locale
Print..
Saveto File. |roject with many contributors.
for more information an
Bt | cite R or R packages in publications.
Type 'demo()' for some demos, 'help()® for on-line help, or
‘help.start()' for an HIML browser interface to help.
Type 'g()' to guit R.
{Previously saved workspace restored]
>
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Preliminari
R Basics Erogra‘mrlnterface
packages
Code and Data from The Book

Running Commands from an RScript

RGui (64-bit) -
Packages Windows Help

R R Console o[B8 =

Type 'license()' ondSgence ()’ for distribution details. o

Natural language support

R is a collaborative project with
Type ‘concributors()' for more inform
‘citation()' on how to cite R or R packs

Type 'demo()' for some demos, 'melp()' 4
‘help.stazt ()’ for an HIML browser inted
Type 'q()* to quit R.

[Previously saved workspace restored]

ye- £(
data.frame (x,v
v
JEEEEER
523721
.239333
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Preliminaries
R Basics grogramrlnterface
packages
Code and Data from The Book

Making a Plot in R

el

RGui (64-bit) - O
File History Resize Windows
R R Console R R Graphics: Device 2 (ACTIVE)
>
>
>

°

ISp

2
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o

s
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Preliminaries

Program Interface

R packages

Code and Data from The Book

R Basics

Installing an R Packag

RGui (64-bit) - P
Packages | Windows _Help
e — |
Set CRAN mirror. Eﬁ@
Select repositories...

Install package(s),
Updlate packages.

Istall package(s) from local zip files.
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Preliminaries

Program Interface

R packages

Code and Data from The Book

R Basics

Loading an R Package

R RGui (64-bit) - siEn

Fle Edit View Misc Packages Windows Help

ZLoading required packags: conf.design

Attaching package: ‘Dof.base’

The following objects are masked from ‘package:stats’:
aov, 1m

Tne following object is masked from ‘Dackage:graphics:

plot.design
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Preliminaries

Program Inte

R packages

Code and Data from The Book

R Basics

Documentation for an R Package

Ptp/12700.121106/ray/Dof s hml/Dek base-package iml

orhosona
Do base-package (DoE base} R Documentation A

Full factorials, orthogonal arrays and base utilities for DoE packages

Package Documents PP ——
Document functions o

and data frames Depac i : R e o
available in the PRt ) M‘*:”

there are 0
Lif only few of
d.cf

implemented,

package e

Sor fll facorials in 2-level factors.

Acknowledgments
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Preliminar

Program Interfa

R packages

Code and Data from The Book

R Basics

tation for a Function

fac.design Function for full factorial designs

Function Document Description
Function for creating full factorial designs with arbitrary numbers of levels, and potentially with

fact.design function blocking
in DoE.Base Usage

P k fac.design(nlevels=NULL, nfactors=NULL, factor.names = NULL,

aCkKage replications=1, repeat.only = FALSE, randomize=TRUE, seed=NULL,
blocks=1, block.gen=NULL, block.name="Blocks”, bbreps=replications,
wbreps=1, block.old.behavior=FALSE)

Arguments
nlevels number(s) of levels, vector with nfactors entries or single number; can be
omitted, if obvious from factor.names
nfactors number of factors, can be omitted if obvious from entries nlevels or factor.names

Analysis of Experiments with R




minari

) r rfa
R Basics R packages

Code and Data from The Boo

Example Code in Function Documentation

Examples

## only specify level combination

fac.design(nlevels=c(4,3,3,2))

## design requested via factor.names

fac.design(factor.names=1ist(one=c("a","
three=c("01d", "new"), four=c(-1,1), five

(125,275),
=c("min", "medium”, "max")))
" ## design requested via character factor.names and nlevels
Function Examples #  (with 3 little Gernan lesson for one two three)
fac.design(factor.names=c("eins","zwei","drei"),nlevels=c(2,3,2))

Examples of #4## blocking designs
fac.design(nlevels=c(2,2,3,3,6), blocks=6, seed=12345)
faCt desi n fUnCtion ## the same design, now unnecessarily constructed via option block.gen
- g ## preparation: look at the numbers of levels of pseudo factors
## (in this order)
unlist(factorize(c(2,2,3,3,6)))
## or, for more annotation, factorize the unblocked design
factorize(fac.design(nlevels=c(2,2,3,3,6)))
## positions 1 2 5 are 2-level pseudo factors
## positions 3 4 6 are 4-level pseudo factors
## blocking with highest possible interactions
G <~ rbind(two=c(1,1,0,0,1,0),three=c(0,0,1,1,0,1))
plan.6blocks <- fac.design(nlevels=c(2,2,3,3,6), blocks=6, block.gen=G,
plan. 6blocks

seed=12345)

n Lawso
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Preliminaries
. Program Interface
R Basics >
R packages

Code and Data from The Book

Running a function in a loaded package (DoE.Base)

R R Console = =R

> fac.design(factor.names } ,C=c ("min", "med", "max") ) )
creating full factorial with
B B c

1 10 new med
2 20 old med
3 10 new min
4 20 new med
5 20 new max
€ 10 old max
7 20 new min
8 20 old min
8 10 old med
10 10 old min
11 10 new max
12 20 old max
cl|a55=dasign, type= full factorial
>
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Preliminaries
R Basics Ercgr Interface
packages
Code and Data from The Book

User written R packages illustrated in the book

AlgDesign, agricolae
BsMD

car crossdes

daewr, DoE.base
effects

FrF2

GAD, gdata, gmodels
leaps, lme4d

mixexp, multcomp
nlme

rsm
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Preliminaries

Program Interface

R packages

Code and Data from The Book

R Basics

Website for the book

https://jlawson.byu.edu

Design and Analysis of Experiment Books written by Dr John Lawson

T wasic
Text in Sttt Sciene cience EXPERIMENTAL

Design and Analysis Design and Analysis STRATEGIES
of Experiments of Experiments and DATA ANALYSIS

with SAS withR for SCIENCE 2and

ENGINEERING

John Lawson John Lawson

P

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Preliminaries

. Program In
R Basics R pack

Code and Data from The Book

Code examples in the book

Texts in Statistical Science

R Code Examples
Design and Analysis
of Experiments

with R R Examples for Chapter 3

R Examples for Chapter 2

Code and Data

R Examples for Chapter 4

Code: Web page
Data: daewr
package

R Examples for Chapter 5
R Examples for Chapter 6
R Examples for Chapter 7

R Examples for Chapter 8

or=Wson R Examples for Chapter 0
R Examples for Chapter 10
R Examples for Chapter 11

R Examples for Chapter 12

R Code Examples
Exrata for Design and Analysis of with R 5 s
R Commander Example R Examples for Chapter 13
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Preliminar
ram Interfa
R packag
Code and Data from The Book

R Basics

R Examples for Chapter 2

€« C 8 https;//jlawson.byu.edy

# example 1 p. 18

set.seed(7638)

£ <- factor( rep ( (35, 48, 45 ), =ach = 4))
fac <- sample ( f, 12 )

eu <- 1:12
plan <- data.frame ( loaf = eu, time = fac )
write.csv( plan, file = "Plan.csv”, row.names = FALSE )

# Example 2 p. 23
bread <- read.csv("Plan.csu"}

# Example 3 p. 24

rm(bread)

1ibrary(daeur)

mode <-lm( height ~ time, data = bread )
summary (moda)

# Example 4 p. 25
library(gmedels)
fit.contrast (mode, “"time”, c(1l, -1, @) )

Analysis of Experiments with R




Part Il

A Context for Discussing Experimental

Designs
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Outline of Part Il

© A Context for Discussing Experimental Designs
@ Introduction
@ Preliminary Exploration
@ Screening Factors
o Effect Estimation
@ Optimization
@ Sequential Experimentation
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Introduction
Pr / Exploration
ing Fa
ation
Optimization
Sequential Experimentation

Strategy

Strategy for Experimentation

Present Goal
0% Knowledge 100%

Objective: Preliminary Screening  Effect Optimization Mechanistic

Exploration  Factors Estimation Modeling
No. of 5-20 3-6 2-4 1-5
Factors
Purpose: Identify Identify Estimate Fit Empirical Estimate

Sources of Important  Factor Model Parameters

Variability Factors Effects + Interpolate of Theory

Interactions Extrapolate

R.D. Snee "Raise Your Batting Average” Quality Progress Dec.
2009



Introduction
nary Exploration
Ci Factors
Effect imation
Optimization
Sequential Experimentation

Strategy

Preliminary Exploration

@ Exploratory experiments to study repeatability of the process

o Identify process steps causing majority of the variability in
results

o ldentify factors that possibly affect the results
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Introduction

Screening Factors

Effect Estimation
Optimization

Sequential Experimentation

Strategy

Screening

@ Explores a large number of factors

@ Objective is to identify smaller subset of most important
factors

@ Fit linear models to the data
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Introduction

Strategy

Optimization
Sequential Experimentation

Effect Estimation

@ Explores the relationship between results and important
factors

@ Goal is to estimate linear effects and interactions and develop
a prediction model

e Fit models including linear effects and interactions
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Introduction
i Exploration

Strategy

Sequential Experimentation

Optimization

@ Explores the relationship between results and a limited
number of quantitative leveled factors

@ Goal is to identify optimum operating conditions within the
factor ranges studied

e Fit quadratic response surface models

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction

Strategy imation

Optimization
Sequential Experimentation

Sequential Experimentation

@ Plan Ahead — decide on a series of experiments that may be
needed

@ Consider All Possible Factors — majority of variation is caused
by a subset of factors, but which ones?

@ Don't Spend All Resources on a Single Experiment

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction

Strategy

Optimization
Sequential Experimentation

Possible Sequences

@ Preliminary Exploration — Effect Estimation
@ Preliminary Exploration — Optimization

@ Screening — Effect Estimation — Optimization
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Part Il

Design and Analysis of Two-Level

Factorials
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Outline of Part Il

© Design and Analysis of Two-Level Factorials
@ Two-Level Factorials
@ The Justification for Two-Levels
@ Creating and Analyzing Two-Level Factorials with R
@ Blocking Two-Level Factorials
@ Restrictions on Randomization - Split-Plot Designs
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Two-Level Factorials
The Justification for Two-Levels
Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Why start discussion with two-level factorials?

Present Goal
, U
0% Knowledge 100%
Objective: Preliminary Screening Effect Optimization Mechanistic
Exploration  Factors Estimation Modeling
No. of 5-20 3-6 2-4 1-5
Factors
Purpose: Identify Identify Estimate Fit Empirical Estimate
Sources of Important  Factor Model Parameters
Variability Factors Effects + Interpolate of Theory
Interactions Extrapolate
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Design and Analysis of Two-Level Factorials
g Two-Level Facto
Restrictions on Randomizz

vel Factorials with R

on - Split-Plot Designs

Why start discussion with two-level factorials?

Effect

Estimation

Screening
Factors

Optimization

P

oo

Two-Level Factorial
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Two-Level Factorials
Justification for T
Design and Analysis of Two-Level Factorials Crea -Level Factorials with R
g Two-Level Factorials

ions on Randomization - Split-Plot Designs

Why start discussion with two-level factorials?

Screening Effect Optimization
Factors Estimation

{ i
S © -
o e e  ofg®

Two-Level Factorial
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Two-Level Factorials
Justification for Two-L s
Design and Analysis of Two-Level Factorials i nd Analyzing Two-Level Factorials with R
ng Two-Level Facto
Restrictions on Randomization - Split-Plot Designs

Effect estimation in two-level factorials

Figure 3.10 Geometric Representation of 2° Design and Main Effect Calculation

Run X, X; X, Response
r- - -

2+ - - oy

3.+ - b

4 + + - Vit j

5 - - + Yo+

6 + - + Vit j J

7 - + + Vot .

8 + + + oy ] - ”

N
Factor A =—> Q%c‘\

EA = (}4,,‘*‘ y++f+ y+,++y+++)/4 - ()/ _t y7+7+ .VW++ y7++)/4
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Two-Level Factorials
Justification for T
Design and Analysis of Two-Level Factorials Crea -Level Factorials with R
g Two-Level Factorials

ions on Randomization - Split-Plot Designs

Relation between effect and regression coefficient

Figure 3.9 Effect and Regression Coefficient for Two-Level Factorial

Y -

/‘ )’t) 1

o

Coded Factor Levels
for factors with
quantitative levels

X = (factor setting — mid setting)
A (high setting — low setting)/2

+
Factor A Factor A
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Two-Level Factorials
The Justification for Two-Levels
Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials

Blocking Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

Definition of interaction effect

Figure 3.11 Definition of an Interaction Effect for Two-Level Factorial

Factor 4 Factor B
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Two-Level Factorials
The Justification for Two-Levels

Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials
Blocking Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

Calculation of interaction effect

Figure 3.12 Geometric Representation of 2% Design and Interaction Effect

Run X, X X- X, Xz Resp.

1 - - - + y...
2 + - - - Vi 1
3 -+ - -y
N m
4 + + - + Vit =
Q
5 - - + + V.. s
<
6 + - + - Ky o
7 - + + - ja
8 + + + + Vit

- d
Factor A == Q‘z@\

Ep=0 4y +y 4y A=+ +y 4y )4
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Two-Level Factorials
The Justification for Two-Levels
Design and Analysis of Two-Level Factorials i !
g Two-Level Factorials
Restrictions on Randomization - Split-Plot Des

Number of experiments

Number of Experiments Required for a Full-Factorial

Number of Levels
Number of Factors | 2 3 4
2 4 9 16
3 8 | 27 64
4 16 | 81 256
5 32| 243 | 1024
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Two-L Factorials

The Justification for Two-Levels
Design and Analysis of Two-Level Factorials Cr

ting and Analyzing Two-Level Factorials
Blocking Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

Choice of Levels

@ Factors with Qualitative Levels

@ Factors with Quantitative Levels

(a) (b) (c)
2 2
s
1 e 2 ’y
© . 18 » ',
> ~ . 16
%1 T~ ) .
H ~ Y
g1 >~ g 4
H ~< £n
© >~ 10
8 =2 s .
,,,,,,,,,,,, 5
6 6
3 ’ B 3 4 7 8 9 10 3 4 8 9
Factor X Factorx actor X
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el Factorials
The Justification for Two-Levels
Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials

Re: tions on Randomization - Split-Plot Designs

Creating a two-level factorial design with R FrF2

Problem 9 Chapter 3 of "Design and Analysis with R"

9. Nyberg (1999) has shown that silicon nitride (SiNx) grown by Plasma En-
hanced Chemical Vapor Deposition (PECVD) is a promising candidate for
an antireflection coating (ARC) on commercial crystalline silicon solar cells.
Silicon nitride was grown on polished (100)-oriented 4A silicon wafers using
a parallel plate Plasma Technology PECVD reactor. The diameter of the
electrodes of the PECVD is 24 ¢cm and the diameter of the shower head
(through which the gases enter) is 2A. The RF frequency was 13.56 MHz.
The thickness of the silicon nitride was one-quarter of the wavelength of
light in the nitride, the wavelength being 640 nm. This wavelength is ex-
pected to be close to optimal for silicon solar cell purposes. The process
gases were ammonia and a mixture of 3% silane in argon. The experiments
were carried out according to a 2° factorial design. The results are shown
in the table on the next page.
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Two-Level Factorials
The Justification for Two-Levels

Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials

Restrictions on Randomization - Split-Plot Desig

Creating a two-level factorial design with R FrF2
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S W n
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Design and Analysis of Two-Level Factorials Creatlng and Analyzmg Two-LeveI Factorials with R
g Two-Level Factorials
\'ons on Randomization - Split-Plot Designs

Creating a two-level factorial design with R FrF2

library(FrF2)

Design.p9 <-FrF2(nruns=32, nfactors=5, blocks=1, ncenter=0, replications=1,
randomize=FALSE, factor.names=list(Ratio=c(0.1,0.9),Gas_flow=c(40,60),
Pressure=c(300,1200), Temperature=c(300,460), Power=c(10,60)))

creating full factorial with 32 runs ...

>
>
+
+

y1l<-c(1.92,3.06,1.96,3.33,1.87,2.62,1.97,2.96,1.94,3.53,2.06,3.75,1.96,3.14,2.15,
3.43,1.95,3.16,2.01,3.43,1.88,2.14,1.98,2.81,1.97,3.67,2.09,3.73,1.98,2.99,2.19,
3.39)
y2<-c(1.79,10.10,3.02,15.00,19.70,11.20,35.70,36.20,2.31,5.58,2.75,14.50,20.70,
11.70,31.00,39.00,3.93,12.40,6.33,23.70,35.30,15.10,57.10,45.90,5.27,12.30,6.39,
30.50,30.10,14.50,50.30,47.10)

Design.p9 <- add.response(Design.p9, yl, replace=FALSE)

Design.p9 <- add.response(Design.p9, y2, replace=FALSE)

VV++V+ +V
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Two-Level Factorials
The Justification for T els
Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials with R
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Creating a two-level factorial design with R FrF2

> print( Design.p9, std.order=TRUE)
run.no.in.std.order run.no Ratio Gas_flow Pressure Temperature Power vyl y2

1 1 1 0.1 40 300 300 10 1.92 1.79
2 2 0.9 40 300 300 10 3.06 10.10
3 3 3 0.1 60 300 300 10 1.96 3.02
4 4 4 0.9 60 300 300 10 3.33 15.00
5 5 5 0.1 40 1200 300 10 1.87 19.70
6 6 6 0.9 40 1200 300 10 2.62 11.20
7 7 7 0.1 60 1200 300 10 1.97 35.70
8 8 8 0.9 60 1200 300 10 2.96 36.20
9 9 9 0.1 40 300 460 10 1.94 2.31
10 10 10 0.9 40 300 460 10 3.53 5.58
11 11 1 0.1 60 300 460 10 2.06 2.75
12 12 12 0.9 60 300 460 10 3.75 14.50
13 13 13 0.1 40 1200 460 10 1.96 20.70
14 14 14 0.9 40 1200 460 10 3.14 11.70
15 15 15 0.1 60 1200 460 10 2.15 31.00
16 16 16 0.9 60 1200 460 10 3.43 39.00
17 17 17 0.1 40 300 300 60 1.95 3.93
18 18 18 0.9 40 300 300 60 3.16 12.40
19 19 19 0.1 60 300 300 60 2.01 6.33
20 20 20 0.9 60 300 300 60 3.43 23.70
21 21 21 0.1 40 1200 300 60 1.88 35.30
22 22 22 0.9 40 1200 300 60 2.14 15.10
30 30 30 0.9 40 1200 460 60 2.99 14.50
31 31 31 0.1 60 1200 460 60 2.19 50.30
32 32 32 0.9 60 1200 460 60 3.39 47.10

NOTE: columns run.no.in.std.order and run.no are annotation, not part of the data frame
>
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Example analysis of a replicated 23 factorial

Levels
Factor -+
A=Ambient temperature, °C 22 32

B=Voltmeter warmup time, minutes 0.5 5.0
C=Time power is connected, minutes 0.5 5.0
Y=measured voltage, millivolts

O +12volts
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Example analysis of a replicated 23 factorial

Table 3.6 Factor Settings and Response for Voltmeter Ezperiment
Factor Levels  Coded Factors

Run A B C X4 Xp Xc Rep Order y

- - 1 5 705

1 22 05 05 -

2 32 05 05 + - - 1 14 620
3 22 50 05 - + - 1 15 700
4 32 5.0 05 + + - 1 1 629
5 22 05 50 - - + 1 8 672
6 32 05 50 + - + 1 12 668
7 22 50 50 - + + 1 10 715
8 32 50 50 + + + 1 9 647
1 22 05 05 - - - 1 4 680
2 32 05 05 + - - 1 7 651
3 22 50 05 - + - 1 2 685
4 32 5.0 05 + + - 1 3 635
5 22 05 50 - - + 1 11 654
[§ 32 05 50 + - + 1 16 691
7 22 50 50 - + + 1 6 672
8 32 5.0 50 + + + 1 13 673
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Example analysis of a replicated 23 factorial

> library(daewr)
Warning message:
package “daewr” was built under R version

3.2.2
> volt
A B C y
1 22 0.50.5 705
2 32 0.5 0.5 620
3 22 5 0.5 700
4 32 50.5629
. 5 22 0.5 5672
volt is a data frame 6 3205 5668
. 7 22 5 5715
in daewr package 8 32 5 5647
9 22 0.5 0.5 680
10 32 0.5 0.5 651
11 22 5 0.5 685
1232 5 0.5 635
13 22 0.5 5 654
14 32 0.5 5 691
1522 5 5672
1632 5 5673
> class(volt$A)
[1] "factor™
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Example analysis of a replicated 23 factorial

Code was cut and pasted from .
R examples for Chapter 2 > library(FrF2) )
> modv<-Im(y ~ A*B*C, data=volt, contrast=list(A=contr.FrF2,

https://jlawson.byu.edu/RBOOK/ . B CONEr Frf2, Cocontr.Fri2))

summary (modv
RExamples.html v( )
Coefficients:
the statement Estimate Std. Error t value Pr(c|t])
contrast=list(A=contr.FrF2,.. (Intercept) 668.5625 4.5178 147.985 4.86e-15 ***
-16.8125 4.5178 -3.721 0.00586 **
0.9375 4.5178 0.208 0.84079
Converts E{ctual factor levels for A stored 5 4375 45178 1.204 0.26315
as factors in data frame volt to coded -6.6875 4.5178 -1.480 0.17707
factor level contrasts Al etc. This would 12.5625 4.5178 2.781 0.02390 *
not be necessary if the design was 1.8125 4.5178  0.401 0.69878
-5.8125 4.5178 -1.287 0.23422

Created by R package FrF2

Signif. codes: 0 "**** 0.001 "**" 0.01 "*" 0.05 "." 0.1 ~
The estimates
are the regression coefficients or Residual standard error: 18.07 on 8 degrees of freedom
B Multiple R-squared: 0.772, Adjusted R-squared: 0.5724
% of the Effects. F-statistic: 3.869 on 7 and 8 DF, p-value: 0.0385
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Example analysis of a replicated 23 factorial

R R Graphics: Device 2 (ACTIVE) ([E=8En |

R R Console == 2 AN C_Warmup

Fi

670
L

Voltage

650
L

2 32

Temperature
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Example analysis of a replicated 23 factorial

Since the design is orthogonal insignificant terms dropped without
refitting to get a prediction equation

Temp — 27]
5

y= 668.56—16.81(

. 6'27(CWarm -~ 2.75][Temp - 27}

2.25 5
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Example analysis of an unreplicated 24 design

Symbol  Factor Name
A Ex of Reactant A (over molar amount)
B Catal Concentration
C Pressure in the Reactor
D Temperature of the Coated Mixing-T

Figure 3.14 Diagram of a Chemical Process
Product + Tars

Distillation

Concen-

Catalyst + H,0

Solvent + Impurities

hn Lawso FTC
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Design and Analysis of Two-Level Factorials

Example analysis of an unreplicated 24 design

R R Console
> library(daewr)
> data (chem)
o 1
chem is a data
frame in daewr
package
5
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Example analysis of an unreplicated 24 design

> modf <-Im( y ~ A*B*C*D, data = chem)
> sunmary(modf)

cal
InCformu

=y~A*B*C*D, data = chem)

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.3125 NA NA NA
A -6.3125 NA NA NA
B 17.8125 NA NA NA
c 0.1875 NA NA NA
D 0.6875 NA NA NA
A -5.3125 NA NA NA
A 0.8125 NA NA NA
B -0.3125 NA NA NA
Al 2.0625 NA NA NA
B -0.0625 NA NA NA
c -0.6875 NA NA NA
Al -0.1875 NA NA NA
A -0.6875 NA NA NA
A 2.4375 NA NA NA
B -0.4375 NA NA NA
Al :D -0.3125 NA NA NA

Residual standard error: NaN on O degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:  NaN
F-statistic: NaN on 15 and O DF, p-value: NA
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Example analysis of an unreplicated 24 design

> fullnormal (coef(modf)[-1],alpha=.025) > LGB( coef(modf)[-1], rpt = FALSE)

Normal Q-Q Plot
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Example analysis of an unreplicated 24 design

> LenthPlot(modf, main = "Lenth Plot of Effects™)

Lenth Plot of Effects

9
8
o |
|
2
3
e 24 VE
]
ME
° 1 1
I T T v
| ME
e 1
E SME

A B C D AB AC B:C AD BD CD ABC ABD ACD BCDAB:CCD

factors
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Example analysis of an unreplicated 24 design

> with(chem, (interaction.plot( A, B, y, type = "b", pch = c(18,24),
i nteraction Plot of Catalyst by Excess A",
Excess Reactant A", ylab = "Percent Conversion')))

R R Graphics: Device 2 (ACTIVE) (E=3 fen =)

Interaction Plot of Catalyst by Excess A

A, :
8 A B B= Catalyst concentration
- q
>
2 4
8
c
s
g
e 4
5§ = a
¢}
€
g
s g |
5 8
o
a4

Excess Reactant A
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Example analysis of an unreplicated design with an outlier

E=|| V|- 3, (2)

{Xi=+} {Xj=—

Daniel (1960) proposed a manual method for detecting and correcting an
outlier or atypical value in an unreplicated 2* design. This method consists of
three steps. First, the presence of an outlier is detected by a gap in the center
of a normal plot of effects. Second, the outlier is identified by matching the
signs of the insignificant effects with the signs of the coded factor levels and
interactions of each observation. The third step is to estimate the magnitude
of the discrepancy and correct the atypical value.
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Example analysis of an unreplicated design with an outlier

> library(daewr)
> data(BoxM)
> BoxM
A B C D y
-1 -1 -1 -1 47.46
1-1-1-149.62
-1 1 -1 -1 43.13
1 1-1-146.31
-1 1 -151.47
1-1 1 -148.49
-1 1 1 -149.34
1 1 1-146.10
-1 -1-1 1 46.76

BoxM is a data
frame in daewr
package taken

from BOX(1991) 10 1-1-1

©CONOUDWNE
|
[uN

1 48.56
11 -1 1 -1 1 44.83
12 1 1 -1 1 44.45
13 -1 -1 1 159.15
14 1 -1 1 151.33
15 -1 1 1 147.02
16 1 1 1 1 47.90
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Example analysis of an unreplicated design with an outlier

> fullnormal (coef(modB)[-1],alpha=.2)

Estimate
L
[}
8
.o

2 El 0 1 2
Normal Scores
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Example analysis of an unreplicated design with an outlier

> Gaptest(BoxM)
Effect Report
Corrrected Data Report

Label Half Effect Sig(.05) Response Corrected Response Detect Outlier
A -0.400 no 47.46 47.46 no
B -2.110 no 49.62 49.62 no
c 1.855 no 43.13 43.13 no
D 0.505 no 46.31 46.31 no
AB 0.455 no 51.47 51.47 no
AC -1.245 no 48.49 48.49 no
AD -0.290 no 49.34 49.34 no
BC -0.400 no 46.10 46.10 no
BD -0.590 no 46.76 46.76 no
cD 0.745 no 48.56 48.56 no
ABC 0.600 no 44.83 44.83 no
ABD 0.360 no 4445 44.45 no
ACD 0.200 no 59.15 52.75 yes
BCD -0.790 no 51.33 51.33 no
ABCD 0.760 no 47.02 47.02 no
47.90 47.90 no
Lawson, Grimshaw & Burt Rn Statistic = 1
95th percen e of Rn = 1.201
Initial Out r Report

Standardized-Gap = 3.353227 Significant at 50th percentile
Final Outlier Report
Standardized-Gap = 13.18936 Significant at 99th percentile

Analysis of Experiments with R
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Example analysis of an unreplicated design with an outlier

Effect Report g
Label Half Effect Sig(.05) g
A -4.514306e-15 no ¢
B -1.710000e+00 yes
C 1.455000e+00 yes
D 1.050000e-01 no "
AB 5.500000e-02 no é 24
AC -8.450000e-01 yes 2
AD 1.100000e-01 no 2
BC 2.170070e-15 no 2
BD -1.900000e-01 no <
CcD 3.450000e-01 no © 4
ABC 2.000000e-01 no
ABD -4.000000e-02 no
ACD 6.000000e-01 no
BCD -3.900000e-01 no
ABCD 3.600000e-01 no =
T T T T T
Lawson, Grimshaw & Burt Rn Statistic = 1.626089 0.0 05 1.0 15 20

95th percentile of Rn = 1.201
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Blocking a 2*

Dish Soaking Experiment

Experimental Unit: Response: Number of Clean grid squares

4

Factors:
A=Water Temperature ~ B=Soap Amount
Y Table 7.4 Factors for Dishwashing Experiment
! Levels
o Factor (=) (+)
. = A-Water Temperature 60 Deg ' 115 Deg F
C=Soap Brand D=Soaking Time B-Soap Amount 1 ths 2tbs
C-Soaking Time 3 min 5 min
D-Soap Brand WF Up
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Blocking a 2*

Blocking factor: Block 1=W.F, 1:30 4 E.U’s per block

Block 2 = W.F., 1:00

Block 3 = Prego, 1:30 Confound AC, ABD

Block 4 = Prego, 1:00 AC(ABD)=BCD gets
confounded

Table 7.5 Blocks for Dishwashing Fxperiment

Block Type Sauce Microwave Time
1 Store Brand 1 min
2 Premium Brand 1 min
3 Store Brand 1:30 min
4 Premium Brand 1:30 min
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Create the design with FrF2

>

Y,

AWN R

o~ o

9

10
11
12

13
14
15
16

library(FrF2)
Bdish <- FrF2(16, 4, blocks=c("'ABD", "BCD™), alias.block.2fis=TRUE, randomize=FALSE)

Bdish
run.no run.no.std.rp Blocks A B C D
1 - -1-1-1-1
2 6.1.2 1-1 1-1 1
3 .3 1 1-1 1 1
4 15 1.4 11 1 1-1
run.no run.no.std.rp Blocks A B C D
5 3.2.1 2-1-1 1-1
6 8.2.2 2-1 11 1
7 10.2.3 2 1-1-1 1
8 13.2.4 2 1 1-1-1
run.no run.no.std.rp Blocks A B C D
4.3.1 3-1-1 1 1
10 7.3.2 3-1 1 1-1
11 9.3.3 3 1-1-1-1
12 14.3.4 3 1 1-1 1
run.no run.no.std.rp Blocks A B C D
13 2.4.1 4-1-1-1 1
14 5.4.2 4 -1 1-1-1
15 11.4.3 4 1-1 1-1
16 16.4. 4 1 1 1 1

class=design, type= FrF2.blocked

NOTE: columns run.no and run.no.std.rp are annotation,

hn Lawso

el Factorials

Split-Plot Des

not part of the data frame
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Create the design with FrF2

>

y<-c(0, 0, 12, 14, 1, O, 1, 11, 10, 2, 33, 24, 3, 5, 41, 70)
Bdish<-add.response(Bdish, response=y)
Bdish

Y

run.no run.no.std.rp Blocks A B C D y
1 1 -1 1-1-1-1-1 0
2 2 6.1.2 1-1 1-1 1 0
3 3 12.1.3 1 1-1 1 112
4 4 15.1.4 11 1 1-114

run.no run.no.std.rp Blocks A B C D vy
5 5 3.2.1 2-1-1 1-1 1
6 6 8.2.2 2-11 1 10
7 7 10.2.3 2 1-1-1 1 1
8 8 13.2.4 2 1 1-1-111

run.no run.no.std.rp Blocks A B C D vy
9 9 4.3.1 3-1-1 1 110
10 10 7.3.2 3-1 1 1-1 2
11 11 9.3.3 3 1-1-1-133
12 12 14.3.4 3 1 1-1 124

run.no run.no.std.rp Blocks A B C D vy
13 13 2.4.1 4-1-1-1 1 3
14 14 5.4.2 4 -1 1-1-1 5
15 15 11.4.3 4 1-1 1-141
16 16 16.4.4 4 1 1 1 170

class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of
the data frame

Analysis of Experiments with R
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Analyze the design ignoring blocks

> mudu<-Im(y ~ A*B*C*D, data=Bdish)
> fullnormal (coef(mudu)[-1],alpha=.1)

Normal Q-Q Plot

12

ABD

Estimated Effects
6
|

Normal Scores
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dish <- Im( y ~ Blocks + A * B * C * D, data = Bdish)
effects <- coef(dish)

effects <- effects[5:19]

effects <- effects[ lis.na(effects) ]

library(daewr)

halfnorm(effects, names(effects), alpha=.25)

o~

>0

abs(effects)
6
L

Half-Normal Scores

hn Lawso FTC
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An unlikely interaction

7 <- “UP™

VVVVVVV

Average ean Squeres
it

10
I

1tbs 2tbs

Soap Amount B
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Criteria for choosing block defining contrasts

Confounding a 2% in blocks of size 29

1. Choose k-q block defining contrasts
2. Block defining contrasts plus their generalized interactions are confounded with blocks

Example: Confounding a 2° factorial in blocks of size 22=4 =»>25/22 =23 = 8 blocks, 7 df
5-2 =3 Choose ABC, CDE, ABCDE as block defining contrasts
then the generalized interactions ABDE, DE, AB, and C are also confounded with blocks.

To find the best generators and block defining contrasts for a particular design problem is not
a simple task. Fortunately, statisticians have provided tables that show choices that are optimal
in certain respects. Box et al. (1978) provide tables for block defining contrasts that will result
in a minimal number of low-order interactions being confounded with blocks in a blocked 2%
design. Sun et al.(1997) provide an extensive catalog of block defining contrasts for 2 designs
and generators for 2P designs along with the corresponding block defining contrasts that will
result in best designs with regard to one of several quality criteria such as estimability order.

When not specied by the user, the function FrF2 in the R package FrF2 uses the block defining
contrasts from Sun et al.'s (1997) catalog to create blocked 2 designs.

hn Lawson FTC Short Course - Design and Analysis of Experiments with R
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design with Default FrF2 block contrasts

> Blocked25<-FrF2(32, 5, blocks=8, alias.block.2fis=TRUE, randomize=FALSE)
> summary(Blocked25)

Call:

FrF2(32, 5, blocks = 8, alias.block.2fis = TRUE, randomize = FALSE)

Experimental design of type FrF2.blocked
32 runs
blocked design with 8 blocks of size 4

Factor settings (scale ends):

ttin
D
11 -
11

e
pRo
Bem

1
2
Design generating information:
$legend

[1] A=A B=B C=C D=D E=E

$~generators for design itself”
[1] full factorial

$ block generators™
[1] ABCD ACE BCE
no aliasing of main effects or 2fis among experimental factors

Aliased with block main effects:
[1] AB CD

Analysis of Experiments with R
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Create design with Default FrF2 block contrasts

The design itself:

run.no run.no.std.rp Blocks A B C D E
1 1 3.1.1 1-1-1-1 1-1
2 2 6.1.2 1-1-11-1 1
3 3 28.1.3 11 1-1 11
4 4 29.1.4 111 1-1-1

run.no run.no.std.rp Blocks A B C D E
5 5 9.2.1 2-1 1-1-1-1
6 6 16.2.2 2-1 11 11
7 7 18.2.3 2 1-1-1-11
8 8 23.2.4 2 1-1 1 1-1

run.no run.no.std.rp Blocks A B C D E
10.3.1 3-1 1-1-1 1

10 10 15.3.2 3-1 11 1-1
11 11 17.3.3 3 1-1-1-1-1
12 12 24.3.4 3 1-11 11
run.no run.no.std.rp Blocks A B C D E

13 3 4.4.1 4-1-1-1 1 1
14 14 5.4.2 4-1-11-1-1
15 15 27.4.3 4 1 1-1 1-1
16 16 30.4.4 4 1 1 1-1 1
run.no run.no.std.rp Blocks A B C D E

17 17 1.5.1 5§-1-1-1-1-1
18 18 8.5.2 5§-1-11 1 1
19 19 26.5.3 51 1-1-1 1
20 20 31.5.4 5111 1-1

class=design, type= FrF2.blocked
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame
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Multiple process steps make complete randomization very
time consuming

Process Experiments

* Factor in Earlier Step
become Whole Plot
Factor

* Factors in Later Steps
can be varied within and
become subplot factors
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Example - Process for making sausage casing

Grind Collagen

Dissolve to

make Gel
Raw Material Batch
\ ral | It e
s sl |
smplex biot
Extrude Gel
Extrusion to make Casing
OF Bl Tube
i ! r casing h
[ r for t ;
sfa
Product
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Test all 4 combinations of C and D in each batch

Sausages can be cooked in many ways from steaming to deep-fat frying, and
the casing must be able to handle the stress and temperature changes without
bursting. Experiments were run to determine how the combination of levels
of two factors A and B in the gel making process, and the combination of
levels of two factors C' and D in the gel extrusion step affected the bursting
strength of the final casing.

Table 8.4 First Four Batches for Sausage-Casing Fxperiment

Gel C - + - +
Batch A B D - - + +
1 - - 2.07 2.07 210 2.12
2 + - 2.02 198 200 1.95
3 -+ 2.09 2.05 208 2.05
4 + + 1.98 196 197 197
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Repeat with another lot of raw material (collagen)

Table 8.5 Second Block of Four Batches for Sausage-Casing Frperiment

Gel C - + - +
Batch A B D - - + +
1 - - 2.08 2.05 207 205
2 + - 2.03 197 199 197
3 -+ 2.05 202 202 201
4 + + 2.01 201 199 197
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Whole plot model is like a blocked two-factor factorial

Yijk = b+ b + o + B + aBjx + wijn

b; is the random block or collagen shipment effect

a; is the fixed effect of factor A

3. is the fixed effect of factor B

FTC Short Course - Design and Analysis of Experiments with R
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Creating and Ana g Two-Level Factorials v
ng Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Design and Analysis of Two-Level Factorials

Split-plot model has two error terms

The model for the complete split-plot experiment is obtained by adding the

split-plot factors C' and D and all their interactions with the other factors as
shown

Block (Collagen Lot) Block interactions

(variability in gel batches)
Yijkim = p + bi + o + Bk + aBjk + wijk
+ Y + 9 + Y0 + ay; + (mi,,,,
+ Bkt + BOkm + By k1 + B0 jkm
-+ 1\“,/5‘];\., + ‘fﬁ(ﬂ.lm + llj'}l%)‘v[,n + €ijkim

n Lawson FTC Short Course - Desig
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Two- | Factorials
The Justification for Two-Levels

Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials with
Blocking Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

Create the design with FrF2

> FrF2(32, 4, WPs = 8, nfac.WP = 2, factor.names = (c("A","B'

run.no run.no.std.rp A B WP3 C D
1 4.1.4-1-1 -1 1 1
2 2 1.1.1 -1 -1 -1 -1 -1
3 3 3.1.3 -1 -1 -1 1-1
4 4 2.1.2-1-1 -1-1 1
run.no run.no.std.rp AB WP3 C D
5 5 9.8.111 1-1-1
6 6 0.8.2 11 1-1 1
7 7 8.411 11 1
8 8 31.8.311 1 1-1
run.no run.no.std.rp A BWP3 C D
9 20.5.41-1 -1 1 1
10 10 18.5.21-1 -1-1 1
11 11 17.5.11 -1 -1 -1 -1
12 12 19.5.31-1 -1 1-1
run.no run.no.std.rp A B WP3 C D
29 29 15.4.3 -1 1 1 1-1
30 30 16.4.4 -11 1 1 1
31 31 13.4.1 -1 1 1-1-1
32 32 14.4.2 -1 1 1-1 1
class=design, type= FrF2.splitplot

NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

n Lawso FTC Short Course - Design and Analysis of Experiments with R



Two-Level Factorials
The Justification for Two-Levels

Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials
Blocking Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

The data frame sausage is in the daewr package

> library(daewr)

> library(lImed)

g required package: Matrix
g required package: Rcpp

Attaching package: *lIme4*

The following object is masked from "package:daewr”:

cake
> rmod2<-Imer(ys- A + B + A:B + (1]Block) + (1]A:B:Block) + C + D + C:D + A:C + A:D +
+ B:C + B:D + A:B:C + A:B:D + A:C:D + B:C:D + A:B:C:D, data=sausage)

> summary(rmod2)

Linear mixed model fit by REML ["ImerMod™]

Formula: ys ~ A + B + AzB + (1 | Block) + (1 | A:B:Block) + C +
A:C + A:D + B:C + B:D + A:B:C + A:B:D + A:C:D + B:C:D + A:B:
Data: sausage

REML criterion at convergence: -69.4

Scaled residuals:
Min 1Q Median 3Q Max
-1.5089 -0.3102 0.0000 0.3102 1.5089

Random effects:

Groups  Name Variance Std.Dev.
AzB:Block (Intercept) 0.0003396 0.01843

Block (Intercept) 0.0000000 0.00000

Residual 0.0002385 0.01544

Number of obs: 32, groups: A:B:Block, 8; Block, 2

hn Lawso FTC Short Course - Desi Analysis of Experiments with R




Factorials
The Justification for Two-Levels
Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials
Blocking Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

Analysis of the fixed Effects

> anova(rmod2)
Analysis of Variance Table

of sum Sq Vean Sq F value C =Low Level C = High Level
A 1 0.0068346 0.0068346 28.65174= g 2
B 1 0.0003926 0.0003926 1.6458 I <
c 1 0.0038281 0.0038281 16.0480«=  _ | P
D 1 0.0005281 0.0005281 2.2140 5 &
AB 1 0.0001685 0.0001685 0.7065 g 24 £ 34
c:D 1 0.0002531 0.0002531 1.0611 = rL
AzC 1 0.0001531 0.0001531 0.6419 g 7 g 7
A:D 1 0.0009031 0.0009031 3.7860 3 g 3 g
B:C 1 0.0000781 0.0000781 0.3275 § ~ | LEGEND § «
B:D 1 0.0002531 0.0002531 1.0611 E E
A:B:C 1 0.0013781 0.0013781 5.7773 = =
A:B:D 1 0.0007031 0.0007031 2.9476 § | Below 8 4
A:C:D 1 0.0000281 0.0000281 0.1179 - -
B:C:D 1 0.0000281 0.0000281 0.1179 3 ¥ i &
A:B:C:D 1 0.0000281 0.0000281 0.1179 — p—

Effect of factor A depends
upon the combination
of levels of factors B and C

Analysis of Experiments with R




Factorials
The Justification for T Levels
Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials
Blocking Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

An unreplicated split-plot design

Bisgaard et al.(1996) described an experiment that was performed to study the plasma treatment
of paper, between electrodes in a low vacuum chamber reactor, to make it more susceptible to ink.

The factors are shown below. f
i

Levels
Factor - + Difficulty in Changing Levels
A - pressure Low High (\,\,\»j
B - Power Level Low ngh d|ff\FuIt requl]res a new set up to change 7 g
C - Gas Flow Rate Low High difficult requires a new set up to change
D - Type Gas Oxygen SiCl, difficult requires a new set up to change
E - Paper Type /& 53 easy both types can be treated in the same

run after setup is complete

Analysis of Experiments with R



Tw Factorials
The Justification for Two-Levels

Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials
Blocking Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

The data frame plasma is in the daewr package

Table 8.6 Plasma Ezperiment Factor Levels and Response

A B C D
Whole-Plot Effects —
A, B, AB, C, AC, BC, ABC, D, AD, BD, ABD, CD, ACD, BCD, ABCD B = = =
- = =
Split-Plot Effects b - -
E and interactions with E - - 3 -
> library(daewr) SEE R
> sol <- Im(y ~ A*B*C*D*E, data = plasma) = B e =
> effects <- coef(sol) e R =
> effects <- effects[c(2:32)] = = = 4
> Wpeffects <- effects[c(1:4, 6:11, 16:19, 26)] $ = = +
> Speffects <- effects[c(5,12:15,20:25,27:31)] -+ - %
+ o+ - +
- -+ %
+ - 4+ o+
= & T &
+ o+ o+ o+

Analysis of Experiments with R
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Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials v
ng Two-Level Factorials
Restrictions on Randomization - Split-Plot Designs

Analysis by normal plot of all effects is misleading

> fullnormal (effects, names(Wpeffects), alpha = .10)

Figure 8.6 Normal Plot of All Effects—Plasma Ezperiment
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| Factorials

Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials v
ng Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

Normal plot of whole-plot effects

> fullnormal (Wpeffects, names(Wpeffects), alpha = .10)

Figure 8.4 Normal Plot of Whole-Plot Effects— Plasma Ezperiment
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| Factorials

Design and Analysis of Two-Level Factorials Creating and Analyzing Two-Level Factorials v
ng Two-Level Factorials

Restrictions on Randomization - Split-Plot Designs

Normal plot of split-plot effects

> fullnormal (Speffects, names(Speffects), alpha = .05)

Figure 8.5 Normal Plot of Sub-Plot Effects— Plasma Ezperiment
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Part IV

Design and Analysis of Preliminary

Experiments for Estimating Sources of

Variance
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Outline of Part IV

@ Preliminary Exploration
@ Introduction
@ One-Factor Designs
@ Two-Factor Designs
o Staggered Nested Designs for Multiple Factors
@ Graphical Methods to Check Assumptions
@ Chemistry Example
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Preliminary

Preliminary Exploration

Introduction
One-Factor Desi
D

ons for Multiple Factors

al Methods to Ch Assumptions

hemistry Example

B 4 . ¥ .
& T . R’ S Y
S — A Py
9 % % 9 %
0% Knowledge 100%
Objective: Preliminary Screening Effect Optimization Mechanistic
Exploration  Factors Estimation Modeling
No. of 5-20 3-6 2-4 1-5
Factors
Purpose: Identify Identify Estimate Fit Empirical Estimate
Sources of Important  Factor Model Parameters
Variability Factors Effects + Interpolate of Theory
Interactions Extrapolate

FTC Short Course - Desi
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Introduction

Preliminary

Identify fruitful areas for identifying factors

Sampling Experiments

* |dentify Process Steps
that contribute the most
variability

* Later identify factors in
variable process steps
that cause the variability

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction

Preliminary

Multiple Factors
Assumptions

Two sources of variability

Hare (1988) discussed experiments to control variability in dry soup
mix “intermix” (vegetable oil, salt flavorings etc.).

e too little not enough flavor

e too much too strong

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction
One-Factor Designs

Preliminary

Possible Factors

A - Ingredients

B - Cook temperature
C - Dryer temperature
D - Dryer RPM, etc

E - number of mixer
ports for Vegetable oil
F - temperature of
mixer jacket
G - Mixing time
H - Batch weight
| - delay time between
mixing and packaging,
etc. ...

n Lawson FTC Short Course - Design and Analysis of Experiments with R




Introduction
One-Factor Designs
-Factor Desi

Preliminary

Method of Moments Estimators

Yy =utt ey, i=14, j=13, k=4, r=3

Table 5.4 Variability in Dry Soup Intermiz Weights
Batch Weight
il 0.52, 2.94, 2.03

2 4.59, 1.26, 2.78

3

4
Source df MS EMS
Factor T t—1 msT o’ +ro}
Error t(r-1 msE o’

n Lawson FTC Short Course - Design and Analysis of Experiments with R




Introduction
One-Factor Designs
Tv i

Preliminary

ns for Multiple Factors
sck Assumptions

R R Console =
-

ght =~ batch, data=soupmx)

Sum 5g Mean 5g F walue Pr(>F) 5 2
batch 3 1.861 0.5535 0.32 0.811 o +3O-b
Residuals g8 13.850 1.7312 2
> | g

v

67 =1.7312

., 0.5535-1.7312

6="" 22200

3
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Introduction
One-Factor Designs
-Factor Desi

Preliminary

Vi = AL+, y=XpB+e. B'=(p,t)

t (O I, 0
( . )m\[‘n\ (( 0 )( 0’0‘ 27 )) I;isatxt Identity matrix
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Introduction
One-Factor Designs
T

Preliminar .
Y signs for Multiple Factors
e ssumptions

Vi =M+t e, y=XpB+e. B'=(u,t")

I;isatxt Identity matrix

maximum likelihood estimators for o7 and o~ are found my maximizing

n
(27 %nl"‘% N (2r)zno2lznlnaT

. 1[ssE | ssT , (5.—p)°
xp[-L(y - p1n)' V iy - pln)] Pz |57+ 5+
L Vi) = p[-3(y - 1)V (y - pln)] _ { [ ]

hn Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction
One-Factor Designs

Preliminary

Vi = U+ &G, y=XpB+e, B = (i, t)

t (0 r 0
( . )~AH~;\ (( 0 )( 0’0‘ ey )) I;isatxt Identity matrix

maximum likelihood estimators for &7 and o~ are found my maximizing

ssE | (5.-p)?
exp [—%( — 1)V (y - pl, )] ‘\l’{ [ A X ]
L(p,Vly) = (')')?nl‘ |7 (2:)5:zﬁ2[§n]/\%T

REML estimators for o] and o?are found my maximizing

A
L(0?,07|ssT, ssE) = M
L(ply.)
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One-Factor Designs
r D

Preliminary ons for Multiple Factors

al Methods to Ch Assumptions
hemistry Example

Maximum Likelihood and REML estimators

library(daewr)

library(lme4)

mod2<-Imer(weight ~ 1 + (1]batch), data=soupmx)
> summary(mod2)

Linear mixed model fit by REML ["ImerMod~]
Formula: weight ~ 1 + (1 | batch)

Data: soupmx

>
>
>

REML criterion at convergence: 37.5

Scaled residuals:
Min 1Q Median 3Q Max
-1.56147 -0.71722 -0.01614 0.43230 1.86604

Random effects:
Groups Name Variance Std.Dev.

batch (Intercept) 0.00 0.000 O-lf =0.0
Residual 1.41 1.187 A2
Number of obs: 12, groups: batch, 4 6 =141

Fixed effects:
Estimate Std. Error t value
(Intercept) 2.3742 0.3428 6.926

FTC Short Course - Desi d Analysis of Experiments with R




Introduction
One-Factor Designs
D

Preliminary

The next step - screening factors

SR
5 S,
& Zs

Screening
Factors

Objective: Preliminary
Exploration

No. of 5-20
Factors

Factor Label Name Low Level High Level
A Number of Ports 1 3

B Temperature Cooling Water Ambient
C Mixing Time 60 sec. 80 sec.
D Batch Weight 1500 1b 2000 1b
E Delay Days U 1

FTC Short Course - Desi
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Introduction

One-Factor Designs

Two-Factor Designs

S Nested Designs for Multiple Factors
aphical Methods to Ch Assumptions
hemistry Example

Preliminary

Nested design

Nested Design

+=

FTC Short Course - Desi
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Introduction
One-Factor Designs

Preliminary Two-Factor Designs
7 Stag; Nested Designs for Multiple Factors

Graphical Methods to Ch Assumptions
Chemistry Example

Staggered nested design

FTC Short Course - Desi d Analysis of Experiments with R




Introduction
One-Factor Desi

Preliminary

Graphical Methods to Ch
Chemistry Example

Staggered nested design

Assumptions

3 Stage 4 Stage 5 Stage

FTC Short Course - Desi

6 Stage
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Introduction
-Factor D
wo-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphi ethods to Check Assumptions

Preliminary

Method of moments estimation

Stages Term EMS

Staggered 3 A oz + (5[3)0% + 305
Nested  Nested B o2+ (4/3)0%
Source df df C o2,
A a-1 a-1 4 A 0%+ (3/2)0Z + (5/2)0F + 405
Bin A a a B 0%+ (7/6)c2 + (3/2)0%,
CinB a 2a C o+ (4/3)02
Din C a da D o}

n Lawson FTC Short Course - Design and Analysis of Experiments with R




Introduction
One-Factor Desi
Preliminary
Graphical Methods to Ch Assumptions
Chemistry Example

An Example

Mason et al. (1989) described a study where a staggered nested design was used to estimate the
sources of variability in a continuous polymerization process. In this process polyethylene pellets
are produced in lots of one hundred thousand pounds. A four-stage design was used to partition
the source of variability in tensile strength between lots, within lots and due to the measurement

process.

Lots

Box within Lot
Preparation within Box

Repeat strength test
within preparation

FTC Short Course - Desi d Analysis of Experiments with R




Introduction
-Factor D
wo-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphi ethods to Check Assumptions

Preliminary

Data from the first 10 of 30 lots

Table 5.13 Data from Polymerization Strength Variability Study

Box 1 Box 2

Preparation Preparation

1 2 1

Lot test 1 test2 test 1 test 1
1 0.76 9.24 11.91 9.02

2 10.65 10.00 13.69

3 6.50 8.02 7.95

4 8.08 9.15 7.46

5 7.84 7.43 6.11

6 9.00 7.01 8.58

7 12.81 11.13 10.00

8 10.62 14.07 14.56

9 4.88 4.96 4.08 4.76

10 9.38 8.02 6.73 6.99
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Introduction

-Factor D
Two-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphi ethods to Check Assumptions
Chemi Example

Preliminary

Method of moments estimators

R R Console [E=5 Eal =)

|> mod2<-aov (strength ~ 1ot + lot:box + lot:box:prep, data = polymer) . Data frame
> )
DF Sum Sq Mean Sq T value  Pr(>F) polymer

lot 29 856.0 29.516 45.552 < Ze-16 *¥*% F

lot:box 30 50.1 1.670 2.577 0.005774 *%* Isin the
lot:box:prep 30 68.4 z.281 3.521 0.000457 **%

Residuals 30 19.4 0.648 daeWr
- package
S5ignif. codes: Q Yx®%r 0,001 ***f 0.01 ** 0.05 .7 0.1 * * 1

’ v

2 \ 1Q
or =0.648
oh = (2.281-0.648)/(4/3) = 1.22475
0% = (1.670 - [0.648 + (7/6)1.22475])/(3/2) =
o7 = (29.516 - [0.648 + (3/2)(1.22475) + (5/2)(=0.27125)])/4 = 6.92725

nd Analysis of Experiments with R
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REML estimators

Introduction
On -Factor Designs
o-Factor Designs
Staggered Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Preliminary

R Console =1 o]
4 {1]let) + (1|lot:box) + (1|lot:box:iprep), data = Y
['lmerted']
Formula: scremgeh ~ 1 + (1 | lot) + (1 | lot:box) + (1 | lot:box:prep)
Data: polymer
REML criterion at convergsnce: 468 % Total
&
Scaled residuals: ©=7.2427 81.1%
Min 1Q Median 3Q Max L
-2.1896 -0.4118 -0.02 7703 &2
2.1896 —0.4118 -0.0206 & 1.7703 6 ~0.0 0.0%
Random effects: e o
Name Variance Std.Dev. > =0.1225 12.3%
(Intercept) 1.0286  1.0147
(Intercept) 0.0000  0.0000 M =0.648 7.4%
(Interceps) 7.2427  2.6912
Residual 0.6568
Number of cbs: 120, groups: lot:be 30; lot:box, 60; lot, 30
Fixed errects:
Estimate Std. Error t value
(Interceps)  7.2208 0.5087  14.2
3 L
n Lawso ort Course - Design and Analysis of Experiments with R
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Introduction
One-Factor Desi
D

gns for Multiple Factors

Graphlcal Methods to Check Assumptions

Chemistry Example

Variance components are pooled variances

Box 1 Box 2

Preparation Preparation

1 2 1

Lot test1 test?2 test1 test 1
i Yii Yoi Y3, Yai

Source

7o 2
Variance s7

Error or test(prep) (Ya; — )'1,)2/2

prep(box)

box

FTC Short Course - Desi

2 (v Qi)

w

3
1

3 (v - Qattartan))?
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Preliminary Nested Designs for Multiple Factors

Graphical Methods to Check Assumptions
Chemistry Example

Computing and graphing variances in R

Box 1 Box 2 Source Variance s?
Preparation Preparation .
1 2 1 Error or test(prep) (Ya; - Y1:)?/2
s AND
Lot test1 test2 test]1 test 1 prep(box) %();“ _ Ox(;)z,))
i Vi Yo Yai Yy 2 e, v v \2
box %()llg,ilhi%%:lﬁl)

> library(daewr)

> data(polymer)

> y <- array( polymer$strength, c(4,30) )

> sdl <- sqgrt( (v[2.] - y[1.]D**2 7/ 2)

> sd2 <- sqre( (2/3) * ( y[3.1 - (v[1.1 + y[2.1) 7 2)**2 )

> sd3 <- sqrt( (3/4) * (y[4.]1 - (v[1.]1 + y[2.]1 + y[3.]1 )/3 )**2)

> o0sd2 <- sort(sd2)

> r <- c( 1: length(sd2))

> zscore <- gnorm( ( ( r - .5 ) / length(sd2) +1 )/ 2)

> plot( zscore, osd2, main = "Half-normal plot of prep(box) standard
+ deviations™, xlab = "Half Normal Score", ylab = "std. due to prep within
+ box™)
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Preliminary 1 De gns for Multiple Factors

Gr: phical Methods to Check Assumptions
Chemistry Examp

Computing and graphing variances in R

Figure 5.6 Half-Normal Plot of Standard Deviations of Prep(Box)
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e-Factor Designs
ctor Designs
g Designs for Multiple Factors
Graphical Methods to Check Assumptions

Preliminary

Chemistry Example

Odd value in Lot 19

Table 5.18 Raw Data for Each Lot and Calculated Standard Deviations
lot Y: Ys Ys Yy 51 S2 S3
.

1 9.76 9.2 11.91 9.02  0.368 1.968 1.111
2 10.65 10.00 1 2 0.645  3.652
3 6.50 8.02 7.95 1.339 )
1 8.08 9.15 7.46  1.980 2.017
5 7.84 7.43 6.11 2365 0.453
6 9.00 7.01 8.58 0.438 1.372
7 1281 11.13  10.00 0.544 1.686

8 14.07 14.56 0.771 2.372

9 1.08 0.686  0.104
10 6.73 1.608  0.912
11 6.59 0.604 :
12 577 1.172

13 8.12 0.747

14 3.95 0.547

15 0.645

16

17

18

19

Analysis of Experiments with R
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s

d Nested Designs for Multiple Factors
Graphical Methods to Check Assumptions
Chemistry Example

Preliminary

Reanalysis excluding lot 19

Table 5.19 Comparison of Method of Moments and REML Estimates for Polymer-
ization Study after Removing Lot 19

Method of Moments REML

Component Estimator Estimator
Lot (02) 5.81864 6.09918
Box(Lot) (07)  0.13116 0.04279
Prep(Box) (¢2) 0.76517 0.79604
Error (02) 0.63794 0.64364
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Preliminary 1 De gns for Multiple Factors

Methods to Ct Assumptions
Chemistry Example

Catalyst Support Material

*Interest in catalyst support in lab
*The rate of catalyst reaction is related to the available number of catalytic sites. To increase the
number of active sites, catalysts are dispersed on a support

«240A>
*Interest in making Al,O; catalyst support

1. High thermal stability

2. High surface area

3. Mesoporous nature

*Important catalyst support properties

1. High surface area -increase catalyst dispersion and catalytic reaction sites ->decrease reaction times.

2. Optimal pore size ->each catalytic system requires a unique pore size ->better diffusion and selectivity.

3. Thermal stability >many catalytic reactions take place at elevated temperatures.

n Lawson FTC Short Course - Desig Analysis of Experiments with R




Introduction

Preliminary

i Designs for Multiple Factors

Methods to Ct Assumptions
Chemistry Example

Applications of Alumina Catalyst Suppor

Aluminum oxides support applications

. Automotive Gasoline Catalytic Converters, which converts toxic chemical (carbon monoxide and unburned
hydrocarbon) in exhaust to CO, and H,0.

N}

. Fischer-Tropsch synthesis (FTS), which liquid fuels are produced from natural gas.

4 Fischer-Tropsch
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o-Factor D
e

ste es ultiple Factors
I Methods to Check Assumptions
Chemistry Example

Process to Create Alumina Catalyst Support

Basic Synthesis Method

Mix metal salt
and base
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One-Factor Designs

o-Factor Designs
Stagg Nested Designs for Multip
Graphical Methods to Check Assumpti
Chemistry Example

Exploration Experiment 1

> Expl
Batch Oven PoreV SA

1 11 1.05172

2 1 2 1.35 188

3 13 1.13 164

Batch Batch 4 2 1 1.21183
5 2 2 1.39 193

6 2 3 1.28 190

Sample Oven 7 3 1 1.26 182
8 3 2 1.41189

9 3 3 1.25183

Oven 10 4 1 127172
11 4 2 1.40 183

0, 0, 05 12 4 3 1.28 172

13 5 1 1.20171

14 5 2 1.42 189

0 0, 0; X 15 5 3 1.17 171
6 6 1 1.19175

17 6 2 1.33 180

18 6 3 1.22179

19 7 1 1.18 165

0,=0, #0;4 20 7 2 1.37 183
21 7 3 1.08 163

22 8 1 1.22167

23 8 2 1.30 169

24 8 3 1.18 184

25 9 1 1.21173

26 9 2 1.39 186

27 9 3 1.11165

28 10 1 1.17 156

20 10 2 1.27 168

30 10 3 1.00 155

n Lawso ort Course - Design and Analysis of Experiments with R




Introduction

Preliminary 1 De gns for Multiple Factors

Methods to Ct Assumptions
Chemistry Example

Analysis of Exploration Experiment 1

> modEl<-Imer(PoreV ~ 1 + (1|Batch), data=Expl)

> summary(modE1)
Linear mixed model fit by REML ["ImerMod™]
Formula: PoreV ~ 1 + (1 | Batch)

Data: Expl

REML criterion at convergence: -42.4
Scaled residuals:

Min 1Q  Median 3Q Max
-2.21247 -0.57360 -0.07284 0.72383 1.61155

Random effects:

Groups  Name Variance Std.Dev.
Batch (Intercept) 0.00000 0.0000
Residual 0.01206 0.1098 —

Number of obs: 30, groups: Batch, 10

Fixed effects:
Estimate Std. Error t value
(Intercept) 1.24300 0.02005 61.99
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Introduction
One-Factor Desi
Prelimi )
reliminary ons for Multiple Factors
al Methods to Ch Assumptions
Chemistry Example

Analysis of Exploration Experiment 1

> modEl<-Imer(SA ~ 1 + (1|Batch), data=Expl)
> summary(modE1)
Linear mixed model fit by REML ["ImerMod~]
Formula: SA ~ 1 + (1 | Batch)

Data: Expl

REML criterion at convergence: 218.1
Scaled residuals:

Min 1Q Median 3Q Max
-1.3054 -0.6465 -0.1551 0.8390 1.5276

Random effects:

Groups Name Variance Std.Dev.
Batch (Intercept) 37.09 6.090
Residual 71.77 8.472 {ummmm

Number of obs: 30, groups: Batch, 10

Fixed effects:
Estimate Std. Error t value
(Intercept) 175.67 2.47 71.12

FTC Short Course - Desi d Analysis of Experiments with R




Residual Variability

> boxplot(SA~Oven, data=Expl, ylab="Surface

R

Surface Area

180

160

R Graphics: Device 2 (ACTIVE)

Preliminary

|

Oven Number

Introduction
One-Factor Designs

esigns for
al Methods to Ct

Chemistry Example

Area™, xlab="0Oven Number')

Multiple Factors
Assumptions

R R Graphics: Device 2 (ACTIVE) =8 g=n ==
o E
2 - =
3 i
S o
3 o  —]
<
- T T T
1 2 3
Oven Number
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Introduction
-Factor D

Preliminary

ns for Multiple Factors

Chemistry Example

Possible Explanation

Batch

Sample

Oven

0, 0,0, X
~_

maybe extra time on the bench affects PoreV and SA not Oven
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Preliminary Multiple Factors

Assumptions
Chemistry Example

Exploratory Experiment 2

> Exp2

Batch Oven PoreV SA
1 1.19 170
1.18 172
1.05 186 ~—
1.11 180
1.06 180
1.14 197 «—
1.16 214
1.49 208
1.33 292 «—
1.44 224
1.32 210
2.22 325 «+—

©O~NOUAWNR
ARDWWWNNNREPR
WNRPWONRWOWNRE ®WN

B e
N R O
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Introduction

Preliminary signs for Multiple Factors

ssumptions
Chemistry Example

Another Conjecture

> Exp2
Batch Oven PoreV SA
1 1.19 170
1.18 172
1.05 186
1.11 180
1.06 180
1.14 197
1.16 214
1.49 208
1.33 292
1.44 224
1.32 210
2.22 325
Batches 3 and 4 used a different (slower) filter and thus
had a longer exposure time to sec-butanol which seemed
to affect Pore Volume and Surface Area

‘ Batch ‘ Batch

Sample ‘ Oven
Oven 0, 0, 0;

0, 0, 0, X

©CoO~NOOUAWNE

DBEDWWWNNNRRERPRE
WNPFPWONRPWONRPWN
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One-Factor Desi
Prelimi )
reliminary ons for Multiple Factors
al Methods to Ch Assumptions
Chemistry Example

Experiment to Estimate Effects

Split-Plot Fractional Factorial

> Exp3
Batch Mix_Time Bench_Time Exp_Time Boats PoreV SA
1 1 1 1 1 1 0.73 177
2 1 1 1 -1 -1 0.64.170 | Boats = Exposure Time
3 1 1 -1 -1 -1 0.66 187
4 1 1 -1 1 1 0.68 210 J
5 2 -1 -1 1 1 1.17 191
6 2 -1 1 1 -1 1.13 169 . .
7 2 -1 -1 -1 -1 1.11 203 [ Boats = Bench Timex Exposure Time
8 2 -1 1 -1 1 1.13 173 |
9 3 1 1 -1 1 0.95 137
10 3 1 1 1 1 0.98 137 )
11 3 1 -1 1 1 0.96 191 [ Boats = Bench Time
12 3 1 -1 1 -1 NA  NA ]
13 4 -1 -1 1 1 0.99 218
1; 1 :i i _i :1 122 igi — Boats =-Bench Time
16 4 -1 -1 -1 1 1.11 162 ]
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Introduction

Preliminary signs for Multiple Factors

ssumptions
Chemistry Example

Experiment to Further Study Relationships

Split-Plot 33 Fractional Factorial

> Exp4

Batch Mix_Time Exp_Time Boats PoreV SA
1 1 1 1 -1 0.93 187
2 1 1 -1 1 0.94 132
3 2 1 1 1 0.68 210
4 2 1 -1 -1 0.66 187
5 3 -1 -1 -1 1.31 170
6 3 -1 1 1 1.19 217
7 4 0 1 0 0.75 143
8 4 0 0 1 0.75 137
9 5 -1 0 0 1.00 164
10 5 -1 0 0 1.02 171
11 6 -1 1 -1 1.11 203
12 6 -1 -1 1 1.17 191
13 7 0 0 1 0.70 140
14 7 0 1 0 0.76 171

hn Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction
e-Factor Designs

L ctor Designs
Preliminary S

esigns for Multiple Factors
Graphical Methods to Check Assumptions

Chemistry Example

Results of Experiments

0% 8 100
SR s
St — Y — Y ————
: % % %
T g El
Preliminary Screening Effect Optimization
Exploration Factors Estimation

Expl,EXp2 ——— Exp3——Exp4

Effect of Factors on Catalyst Support Properties

Properties
Factor Pore Volume | Surface Area
Mixing Time +
Bench Time -
Exposure Time to sec-Butanol +

1. High surface area increase catalyst dispersion and catalytic reaction sites ->decrease reaction times.
2. Optimal pore size ->each catalytic system requires a unique pore size >better diffusion and selectivity.

hn Lawso
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Part V

Design and Analysis of Screening

Experiments

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Outline of Part V

@ Design and Analysis of Screening Experiments

@ Introduction

@ Half-Fractions of Two-Level Factorial Designs

@ One-Quarter and Higher Fractions of Two-Level Factorial
Designs

@ Criteria for Choosing Generators for Fractional Factorial
Designs

@ Augmenting Fractional Factorial Designs to Resolve
Confounding

@ Plackett-Burman and Model Robust Screening Designs

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction
Half-F ons of Ty

Screening

Number of Experiments required for Two-Level Factorials

Number of Factors | Number of Experiments
4 16

32

64

128

256

512

O| 0| N O O
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Introduction
Half-Fractions of Tv

Screening Q==

One-at-a-Time Experiments

A Poor Solution is to Use One-at-a-Time Experiments

Run A B C DE F G H
1 - - - - - e e .
2+ = = e e e e .
3 - 4 - - . .- .
e
5 - = = 4 = = - -
6 - = = =+ - - -
y A L
8 - - - - - -+ .
=
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Introduction
Half-! Fractlons of Two-LeveI Factoriz

Screening

es Confounding
Plackett-Burman and Model Robust Screenin signs

Fractional Factorial Designs

@ Method for strategically picking a subset of a two-Level
Factorial

Used for Screening purposes

Has much higher Power for Detecting Effects than
One-at-a-Time Experiments

Can be used to estimate some interaction effects and do
limited optimization

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction
s of Two-Level Factorial Designs
. rand Hi A i of T
Screening .
Confounding
igns

Paradigms that Justify the Use of Fractional Factorials

e Effect Sparsity Principle-Box and Meyer (1986)
@ Hierarchical Ordering Principle-\WWu and Hamada(2000)
e Effect Heredity Principle-Hamada and Wu(1992)

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction
Half-Fractions of Two-Level Factorial Designs

Screening

Augm >
Plackett-Burman and Model Robust Scr De

Procedure for Constructing a Half-Fraction

For example, to construct a one-half fraction of a 2 design, denoted by 2%
or 2871 the procedure is as follows:

1. Write down the base design, a full factorial plan in k£ — 1 factors using the
coded factor levels (=) and (+).

2. Add the kth factor to the design by making its coded factor levels equal to
the product of the other factor levels (i.e., the highest order interaction).

3. Use these k columns to define the design.

nd Analysis of Experiments with R
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Introduction
Half-Fractions of Two-Level Factorial Designs

Screening

The Base Design

2*" Base Design

Xa Xp X
‘, - -
& + &
+ 4+ -
- -+
+ -+
-+ 4+
+ o+ 4+
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Introduction
Half-Fractions of Two-Level Factorial Designs

. One-Qu r and Higher Fraction
Screening Qe o

Adding an Interaction Column

2*" Base Design

boo- - P
-+ -+
+ o+ - -
- -+ 4+
+ -+ -
- + + -
+ o+ o+ 4+
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Introduction
Half-Fractions of Two-Level Factorial Designs
One-Qu r and Hi r Fraction

Screening

boo- - P
-+ -+
+ o+ - -
- -+ 4+
+ -+ -
- + + -
+ o+ o+ 4+
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Introduction
Half-Fractions of Two-Level Factorial Designs

. One-Qu r and Higher Fraction
Screening Qe o

The Defining Relationship

2*" Base Design
XD

Xa Xo Xe Xog

B D = ABC generator of the design

+ - -+ . i

-+ . D? = ABCD

+  F - - or

- -+ .

i - 1 . I = ABCD

P I N defining relation for the fractional factorial design

FTC Short Course - Desi d Analysis of Experiments with R




Introduction
Half-Fractions of Two-Level Factorial Designs

. One-Qu r and Higher Fraction
Screening Qe o

The Confounding Pattern

Xa Xp Xe¢ Xp
A(I) = A(ABCD) —_—

A= BCD -t -t
M

I+ ABCD
A+ BCD
B+ ACD confounding pattern
C+ ABD
D+ ABC
AB+CD
AC+BD
AD + BC -

or alias structure

FTC Short Course - Desi d Analysis of Experiments with R




Introduction
Half-Fractions of Two-Level Factorial Designs

Screening

Augm >
Plackett-Burman and Model Robust Scr De

An Example of a Half-Fraction

Table 6.3 Factors and Levels for Soup Mix 251 Eaxperiment

Factor Label Name Low Level High Level
A Number of Ports 1 3

B Temperature Cooling Water Ambient
C Mixing Time 60 sec. 80 sec.
D Batch Weight 1500 lbs 2000 Ibs
E Delay Days 7 1

nd Analysis of Experiments with R
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Introduction

Half-Fractions of Two-Level Factorial Designs
One-Quarter and Hi i

Criteria for Choosing Generators fol
Augmenting Fractional F.

Plackett-Burman and Model Robust Scr

Screening

Creating the Design with FrF2

> library(FrF2)
> soup <- FrF2(16, 5, generators = "ABCD", factor.names = list(A=c(1,3),
+ B=c("Cool","Ambient"),

+ C=c(60,80),D=c(1500,2000), E=c(7,1)), randomize = FALSE)
> soup

A B C DE
11 Cool 60 1500 1
2 3 Cool 60 1500 7
3 1 Ambient 60 1500 7
4 3 Ambient 60 1500 1
5 1 Cool 80 1500 7
6 3 Cool 80 1500 1
7 1 Ambient 80 1500 1
8 3 Ambient 80 1500 7
9 1 Cool 60 2000 7
10 3 Cool 60 2000 1
11 1 Ambient 60 2000 1
12 3 Ambient 60 2000 7
131 Cool 80 2000 1
14 3 Cool 80 2000 7
15 1 Ambient 80 2000 7
16 3 Ambient 80 2000 1

class=design, type= FrF2.generators

Analysis of Experiments with R




Introduction
Half-Fractions of Two-Level Factorial Designs

Screening

Adding the Responses

>y <- c¢(1.13, 1.25, .97, 1.70, 1.47, 1.28, 1.18, .98, .78,
+ 1.36, 1.85, .62, 1.09, 1.10, .76, 2.10 )

> library(DoE.base)

> soup <- add.response( soup , y )

> soup

A B C DE vy
1 1  Cool 60 1500 1 1.13
2 3 Cool 60 1500 7 1.25
3 1 Ambient 60 1500 7 0.97
4 3 Ambient 60 1500 1 1.70
5 1  Cool 80 1500 7 1.47
6 3  Cool 80 1500 1 1.28
7 1 Ambient 80 1500 1 1.18
8 3 Ambient 80 1500 7 0.98
9 1  Cool 60 2000 7 0.78
10 3 Cool 60 2000 1 1.36
11 1 Ambient 60 2000 1 1.85
12 3 Ambient 60 2000 7 0.62
131 Cool 80 2000 1 1.09
14 3 Cool 80 2000 7 1.10
15 1 Ambient 80 2000 7 0.76
16 3 Ambient 80 2000 1 2.10

class=design, type= FrF2.generators
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Half-Fractions of Two-Level Factorial Designs

Screening

Augm >
Plackett-Burman and Model Robust Scr De

Checking the Alias Pattern

> modl <- Im(C y ~ (.)™4, data = soup)
> aliases(modl)

C:
C:
B:
B:

B:
A:
A:
A:
A:

WwWwwo

OO0OO0OWWW>»>2>2>MO0OT>
OUMmMOoOMmMMmMOoOMmMMMOMmMmmMmmMm

MMOMoOOMOO @I
o n
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Introduction
s of Two-Level Factorial Designs
. rand Hi A i of T
Screening .
Confounding
igns

Paradigms that Simplify the Interpretation of Results

e Effect Sparsity Principle-Box and Meyer (1986)
@ Hierarchical Ordering Principle-\WWu and Hamada(2000)
e Effect Heredity Principle-Hamada and Wu (1992)
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Screening

Analyzing the Data

Introduction

Half-Fractions of Two-Level Factorial Designs

One-Quarter and Hi
Criteria for Choosi
ing Fract

r Fractions of T

> mod2<-Im(y~(.)"2, data=soup)
> summary(mod2)

Call:
Im.default(formula = y ~ (.)"2, data = soup)
Residuals:
ALL 16 residuals are 0: no residual degrees of f
Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 1.22625 NA NA NA
Al 0.07250 NA NA NA
B1 0.04375 NA NA NA
Cc1 0.01875 NA NA NA
D1 -0.01875 NA NA NA
El 0.23500 NA NA NA
Al:B1 0.00750 NA NA NA
Al:C1 0.04750 NA NA NA
A1:D1 0.01500 NA NA NA
Al:E1l 0.07625 NA NA NA
B1:C1 -0.03375 NA NA NA
B1:D1 0.08125 NA NA NA
B1:E1 0.20250 NA NA NA
C1:D1 0.03625 NA NA NA
C1l:E1 -0.06750 NA NA NA
D1:E1 0.15750 NA NA NA

reedom!

FTC Short Course

Design and Analysis of Experiments with R



Introduction

Half-Fractions of Two-Level Factorial Designs
One-Quarter and Hi i

Criteria for Choosing Generators fol
Augmenting Fractional F.

Screening

Plackett-Burman and Model Robust Scr

Half-Normal Plot of Coefficients

> library(daewr)
> LGB(coef(mod2)[-1], rpt=FALSE)

Absoulute Effects

0.10
L

0.00
!

Half Normal Scores

hn Lawso Analysis of Experiments with R




Introduction

Half-Fractions of Two-Level Factorial Designs

One-Quarter and Higher Fracti f Tv

Criteria for Choosing Generators for Fractional Factorial
Augmenting Fractional F. ial Desi 0 olve Confounding
Plack

Screening

Interpretation of Results

Interaction Plot for Mixing Temperature by Delay time

> soup <- FrF2(16, 5, generators = "ABCD", factor.names = "
+ list(Ports=c(1,3),Temp=c("'Cool","Ambient'), MixTime=c(60,80), @ |
+ BatchWt=c(1500,2000), delay=c(7,1)), randomize = FALSE)

>y <- c(1.13, 1.25, .97, 1.70, 1.47, 1.28, 1.18, .98, .78,

+1.36, 1.85, .62, 1.09, 1.10, .76, 2.10 ) g T4
> library(DoE.base) H

> soup <- add.response( soup , y ) a

> delay <- as.numeric(sub(-1, 7, soup$delay)) g 9
> temp <- soup$Temp 2

> interaction.plot(delay, temp, soup$y, type="b", o
+ pch=c(24,18,22), leg.bty="0" -7
+ main="Interaction Plot for M ng Temperature by Delay time",

+ xlab="Delay Time (days)", ylab=""Average S.D. Fill Weight™)

Delay Time (days)

Analysis of Experiments with R




Introduction

Half-Fractions of Factorial Designs

One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Designs
Augmenting Fractional Factorial Designs to Resolve Confounding
Plackett-Burman and Model Robust Scr De s

Screening

Confounding in Higher Order Fractions

1 . . .
oF 2% = 2P k is the number of factors, p is the fraction power
* In a one half fraction of a 2k experiment every effect that could
be estimated was confounded with one other effect, thus one half
the effects had to be assumed negligible in order to interpret or
explain the results

* In a one quarter fraction of a 2k experiment every effect that can
be estimated is confounded with three other effects, thus three
quarters of the effects must be assumed negligible in order to
interpret or explain the results

* In a one eighth fraction of a 2k experiment every effect that can
be estimated is confounded with seven other effects, thus seven
eights of the effects must be assumed negligible in order to
interpret or explain the results, etc.
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Introduction

Half-Fractions of Two Factorial C ns

Screening One Quarter and ngher Fractlons of Two-Level Factorial Deslgns
for Fr acti Fagturm\ Di

Plackett-Burman and Model Robust Scrx:‘x:mm:, esigns

Procedure for Constructing Higher Order Fractions

Creating a 2P Design

1. Create a full two-level factorial in k-p factors

2. Add each of the remaining p factors by assigning them
to a column of signs for an interaction among the first
k-p columns

John Lawson FTC Short Course - Design and Analysis of Experiments with R



Introduction

Half-Fractions of Two- Factorial Designs

One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Desig
Augmenting Fractional Factorial Desi 0 olve Confounding
Plackett-Burman and Model Robust Scr

Screening

Example of Quarter Fraction

Xp Xp
— —

Xa Xp Xe XuXp XuXe XpXe XuXpXce

- - - + + + -
+ - - - - + +
- + - - + - +
+ + - + - - -
- - + + - - +
+ - + - + -
- + + - - + -
+ + + + + + +

Analysis of Experiments with R




Screening

Example of Quarter Fraction

Introduction

Half-Fractions of Two- Factorial Designs

One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Generators for Fractional Factorial Desig
Augmenting Fractional Factorial Desi olve Confounding
Plackett-Burman and Model Robust Scr

Xp Xg

Xa Xp Xe XaXp XaXe XpXe XaXpXe
- - - + + + -
+ - - - - + +
- + - - + +
+ + - + - - -
- - + + - - +
+ - + - + -
- + + - - + -
+ + + + + + +

I
Xa Xp Xc Xp Xe
- - - +
Tl ’ D=ABand E = AC
- + - - +
+ + - + -
- = # + = These are the generators
+ - + - +
-+ % - -
+ + + + +

Analysis of Experiments with R



Introduction
Half-Fractions of Ty | Factorial igns
Screening One-ngrter and Higher Fractions of Two-Level Factc_)rial Designs
Criteria for Choosing Gene r Fractional Factorial Desi
s to Reso

Example of Quarter Fraction

D = AB and E = AC
the generators
I =ABDandI = ACFE

the generalized
interaction

!

sinceI>=1 I = ABD(ACE) I=BCDE

I=ABD = ACE = BCDE
1

the defining relation

FTC Short Course - Desi d Analysis of Experiments with R




Introduction

Screening i

olve Confounding

Create the Design in FrF2

> frac <- FrF2( 16, 6, generators = c("AB", "AC"™),randomize=FALSE)
frac

A B C D E F
-1-1-1-1 1 1
1-1-1-1-1-1
-1 1-1-1-1 1
1 1-1-1 1-1
-1 1-1 1-1
1-1 1-1-1 1
-1 1 1-1-1-1
11 1-1 1 1

\

©CO~NOOUB_WNER
|
[uN

-1-1-1 1 1 1
10 1-1-1 1-1-1
11 -1 1 -1 1-1 1
12 1 1-1 1 1-1
13-1-1 1 1 1-1
14 1-1 1 1-1 1
5-1 1 1 1-1-1
16 1 1 1 1 1 1

class=design, type= FrF2.generators
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Factorial Designs

s . One Quarter and Higher Fractlons of Two evel Factorial Designs
creening -

View the Alias Structure

>y <- runif( 16, 0, 1)
> aliases( Im( y ~ (-)"3, data = frac) )

A = B:E = C:F

B = C:E:F = AZE

C = B:E:F = A:F

E = A:B = B:C:F

F = A:C = B:C:E

A:D = C:D:F = B:D:E

B:C = E:F = A:B:F = A:C:E
B:D = A:D:E

B:F = C:E = A:B:C = A:E:F
C:D = A:D:F

D:E = A:B:D

D:F = A:C:D

B:C:D = D:E:F

B:D:F = C:D:E

hn Lawson FTC Short Course - Design and Analysis of Experiments with R
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Half-Fractions of Ty | Factorial igns
One-Quarter and Higher Fractions of Two-Level Factorial Designs
Criteria for Choosing Gene r Fractional Factorial Desi
s to Reso

Screening

> frac <- FrF2( 16, 6, generators = c("ABC", "BCD"),randomize=FALSE)
> aliases( ImC y ~ ()3, data = frac) )

A=B = D:E:F

B=A = C:D:F

c=8B = A:B:E

D=A B:C:F

E=A A:B:C

F=A = B:C:D

A:B =

A:C =

A:D =

AE = = D:F

A:F =

B:D =

B:F =

A:B:D C:F B:E:F C:D:E
A:IB:F C:D B:D:E C:E:F
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actior W evel Factorial Designs
g Generators for Fractional Factorial Designs
olve Confounding

Screening

Criteria for Choosing Generators

@ Resolution—Box and Hunter(1961)
@ Minimum Aberration—Fries and Hunter 1980
e Maximum Number of Clear Effects—Chen et. al.(1993)
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Half-Fractions of Tv evel Factorial Designs
One-Quarter and Higher Fractions of T el Factorial Designs
Criteria for Choosing Generators for Fractional Factorial De

nting Fractional Factorial Designs to Resol onfounding
Plackett-Burman and Model Robust Scree ning Designs

Screening

Criteria for Choosing Generators

Resolution—Shortest Word in the Defining Relation
Resolution Il Main effects confounded with two-factor interactions

Resolution IV Main effects confounded with three-factor
interactions, two-factor interactions confounded with
other two-factor interactions

Resolution V' Main effects and two-factor interactions estimable,
assuming three factor and higher order interactions
negligible

Resolution R Each subset of R-1 factors forms a full factorial
possibly replicated
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Half-Fractions of Two-L Factorial ©
Screening One-Quarter and Higher Fractions of T
Criteria for Choosing Generators for Fractlonal Factorlal Designs
Augmenti Fract\una\ Fntorn\ De s to olve Confounding

FrF2 Default-Minimum Aberration Design

> ## maximum resolution minimum aberration design with 9 factors in 32 runs
> ## show design information instead of design itself
> design. info(FrF2(32,9))

$catlg.entry

Design: 9-4.1
32 runs, 9 factors,
Resolution 1V
Generating columns: 7 11 19 29 8 Clear
WLP (3plus): 06800, 8 clear 2fis two-factor

Factors with all 2fis clear: J interactions

$aliased
$aliased$legend
[1] "A=A" "B=B" "C=C" "D=D" “E=E" "F=F" "G=G" "H=H" "J=J"

$aliased$main
character(0)

$aliaseds$fi2
[1] "AB=CF=DG=EH" "AC BF" "AD=BG" ""AE=BH" ""AF=BC"
[6] "AG=BD" " ) "'CE=FH" "'CG=DF"
[11] "CH=EF"
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Fractions of T

. uar

Screening

-Maximum Number of Clear Effects

> ## maximum number of free 2-factor interactions instead of minimum aberration
> ## show design information instead of design itself
>design. info(FrF2(32,9,MaxC2=TRUE))
$catlg.entry
Design: 9-4.2

32 runs, 9 factors,

Resolution IV

Generating columns: 7 11 13 30

WLP (3plus): 07700, 15 clear 2fis
Factors with all 2fis clear: E J

15 Clear
two-factor
interactions

$aliased
$aliased$legend
[1] "A=A" "B=B" "C=C'" "D=D" "E=E" "F=F" "G=G" "'H=H" "J=J"

$aliased$main
character(0)

$aliased$fi2
[1] "AB=CF=DG" "AC=BF=DH" "AD=BG=CH" "‘AF=BC=GH" *AG=BD=FH" *AH=CD=FG" "BH=CG=DF"
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Example of One-eighth Fraction

Iron Oxide Coated Sand (IOCS) used to remove arsenic from ground
water in simple household filtration systems. Coating solution made of
ferric nitrate and sodium hydroxide with NAOH added to control pH.

Filter
Spiked
Water
Sample

Mix Coating || Age Coating | ,| Pour over |,| Mix
Solution Solution clean sand

yes

Ramakrishna et. al. (2006) conducted experiments to optimize
The coating process.
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Factors and Levels

Table 6.7 Factors and Levels for Arsenic Removal Experiment

Levels

Label Factors = +

A coating pH 2.0 12.0
B drying temperature 110° 800°
C Fe concentration in coating 0.1 M 2M
D number of coatings 1 2

E aging of coating 4 hrs 12 days
F pH of spiked water 5.0 8.0
G mass of adsorbent 0.1g lg

n Lawson FTC Short Course - Design and Analysis of Experiments with R
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Screening

> arsrm<-FrF2(8,6,generators = c("AB", "AC", "BC'"), randomize=FALSE)
> y<-c(69.95, 58.65, 56.25, 53.25, 94.40, 73.45, 10.0, 2.11)
> library(DoE.base)
> arsrm2<-add.response(arsrm,y)
> arsrm2
A B C D E F y
1-1-1-1 1 1 169.95
2 1-1-1-1-1 158.65
3-1 1-1-1 1-1256.25
4 1 1-1 1-1-1253.25
5-1-1 1 1 -1 -1[94.40
6 1-1 1-1 1-173.45
7-1 1 1-1-1 110.00
8 1 1 1 1 1 1[2.1]7
class=design, type= FrF2.generators

John Lawson FTC Short Course - Design and Analysis of Experiments with R
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Analysis of the Data

Lmod<-Im(y ~ (.)"2,data=arsrm2)
estef<-coef(Lmod) [c(2:7,12)]
library(daewr)

LGB(estef, rpt=FALSE)

V.V VYV
20
I

\

aliases(Lmod)

Absoulute Effects

mmo o >

=

noeE>»r»ro
O mo wmom

o

T

>

Half Normal Scores
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Possible Interpretations of Results from 'Effect Heredity'

Important factors

Optimal Levels

1. B-Drying Temperature & F— PH of Spiked Water Low Drying Temp.

and Low PH
2. B-—Drying Temperature & BC interaction

Low Drying Temp.
C — Fe concentration in coating

High Fe Conc.

3. F—PH of Spiked Water & CF interaction Low PH

High Fe conc.

n Lawson FTC Short Course - Desig
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Fractional Factorials in

(I = PQR)

Pl- + - +
(I=ABC) Q|- - + +
A B C R|+ - - -
- - + X X X X
+ - - X X X X
-+ - X X X X
+ o+ o+ X X X X

(I+ABC)x(I+PQR)=T+ABC+ PQR+ ABCPQR

Resolution IIT

FTC Short Course - Desi d Analysis of Experiments with R




. O s
Screening Cnterla for Choosmg Generators for Fractlonal Factorlal Deslgns
Augmenting Fractional Factorial Designs to lve Confounding
Plackett-Burman and Model Robust Scr De s

Split-Plot Confounding

P = -QR when whole-plot factor A is at its low level

P = +QR when the whole-plot factor A is at its high level

(I = ABC)
A B C
- + 1--POR
- - I=+PQR . .
J_r o tP(éR Resolution III, but less aberration

+ + + I=+PQR

P =AQR= (1+ABC)(I + APQR) = | + ABC + APQR + BCPQR
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Creating a Minimum Aberration Split-Plot Fractional
Factorial with FrF2

> library(FrF2)
> SPFF2 <-FrF2(16,6, WPs = 4, nfac.WP = 3, factor.names = c("A","B",
> print(SPFF2)
run.no run.no.std.rp A B C P Q R
1 1 12.3.41-1-1 1 1 1
2 2 9.3.11-1-1-1-1 1
3 3 11.3.31-1-1 1-1-1
4 4 10.3.21 -1 -1 -1 1-1
run.no run.no.std.rp ABC P Q R
5 5 14.4.2111-1 1-1
6 6 16.4.4111 1 1 1
7 7 15.4.3111 1-1-1
8 8 13.4.1111-1-1 1
run.no run.no.std.rp AB C P Q R
5.2.1-11-1-1-1-1
10 10 7.23-11-1 1-1 1
11 11 8.2.4-11-1 1 1-1
12 12 6.2.2-11-1-1 1 1
run.no run.no.std.rp A BC P Q R
13 13 4.1.4 -1 -11 1 1-1
14 14 21.2-1-11-1 1 1
15 15 1.1.1 -1 -11-1-1-1
16 3.1.3-1-11 1-1 1

16
class=design, type= FrF2.splitplot
NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

Analysis of Experiments with R
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Checking the Alias Pattern

> y<-rnorm(16,0,1)
> aliases(Im( y ~ (.)"3, data=SPFF2))

A P:Q:R = B:C

B = A:C

C = A:B

P = A:Q:R

Q = A:P:R

R = A:P:Q

AP = Q:R B:C:P
AzQ = P:R = B:C:Q
AR = P:Q = B:C:R
B:P AzC:P = C:Q:R
B:Q = A:C:Q = C:P:R
B: A:C:R = C:P:Q
C:P = A:B:P = B:Q:R
C:Q AzB:Q B:P:R
C:R = A:B:R B:P:Q
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8.5.2 Analysis of a Fractional Factorial Split-Plot

Table 8.10 Fractional Factorial Split-Plot Design for Gear Distortion

P - + - +
A B C Q - - + +
- - - X X
+ - = X X
- o+ - X x
+ o+ - X X
- -+ X X
+ + X3
- o+ o+ X X
+ o+ o+ X X

The defining relation is I = ABC'PQ, and the response was the dishing of the gears.

n Lawson FTC Short Course - Desig Analysis of Experiments with R




Introduction
H 1” Fractions of
VO el Factorial Designs
Cnterla for Choosing Generators for Fractlonal Factorial Designs
1gr ional Factorial Des o Resolve Confounding
Phnkctt Burman and Model Robust Scre ing Designs

Screening

Whole-Plot and Sub-Plot Effects

Table 8.11 FEstimable Effects for Gear Distortion Ezperiment

Whole-Plot Sub-Plot
Effects Effects

A+BCPQ | P+ ABCQ
B+ ACPQ | Q+ ABCP
C+ABPQ | AP+ BCQ
AB+CPQ | AQ + BCP
AC + BPQ | BP+ ACQ
BC + APQ | BQ+ ACP
ABC+ PQ | CP+ ABQ

CQ+ ABP

John Lawson FTC Short Course - Design and Analysis of Experiments with R
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Analysis with R

> spexp <- FrF2(16,5,WPs=8,nfac.WP=3, factor.nanme: Q") randomi ze=FALSE)
> y<-c(18.0,21.5,27.5,17.0,22.5,15.0,19.0,22.0,13.0, 451751450555240135)

> sol<-Im( y~A*B*C*P*Q, data=spexp)

> summary(sol)

Call:
Im.default(formula =y ~ A * B * C * P * Q, data = spexp)

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients: (16 not defined because of singularities)
Estimate Std. Error t value Pr(>|t])

1 (Intercept)  15.4062 NA NA NA

-2 m ~4.9063 NA NA NA

-3 -0.1562 NA NA NA

Whole  — 4 3.9688 NA NA NA
Plot 5 -2.3438 NA NA NA
6 -3.4062 NA NA NA

Effects  _, ; 0.5313 NA NA NA
-8 2.9063 NA NA NA

-9 04062 NA NA NA

10 -0.9063 NA NA NA

1 1.0938 NA NA NA

2 -0.2812 NA NA NA

3 -0.3438 NA NA NA

note: 1 0.1563 NA NA NA
15 0.7812 NA NA NA

ABC=PQ _, 15 0.5938 NA NA NA

FTC Short Course - Desi Analysis of Experiments with R
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effects <-coef(sol)

Wpeffects <- effects[ c(2:4, 7:9,

Screening

Speffects <- effects[ c(5:6, 10:15) ]

fullnormal (Speffects,
fullnormal (Wpeffects,

Normal Q-Q Plot

names(Speffects),
names(Wpeffects),

16) 1

Criteria for Choosing Generators for Fractlonal Factorlal Designs
Augmenti Fract\una\ Fntorn\ De olve Confounding

alpha=.
alpha=.

20)
10)

Normal Q-Q Plot

Estimated Effects

oo

Estimated Effects

Normal Scores

n Lawso

Normal Scores
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Augmenting by Foldover

Design Augmented by 257} Design with Signs Reversed on Factor B

Run A B C D E F
1 - - 4+ o+ o+
2 ®§ = = - &
3 = & - 4 -
| + + - o+ -

5 - - 4+ + -
6 + - + - +
T - o+ 4+ -+
38 + o+ + 4+
9 - 4+ - 4+ o+ o+
10 + + - - - +
11 - = = = %
12 + - - + -
13 - 4+ + o+ -
4 + + + - + -
15 - -+ -+
16+ + o+ o+ o+

defining relation is
I=ABD=ACE =BCF =DE
D confounded with AB

BCDE = ACDF = ABEF

defining relation is

I=-ABD = ACE = -BCF = DEF =-BCDE = ACDF = -ABEF

defining relation is Bis clear and

I=ACE=DEF = ACDF D no longer confounded with AB

n Lawso FTC Short Course - Design and Analysis of Experiments with R
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> arsrm3<-fold.design(arsrm, columns="full*®)
> y<-c(69.95,58.65,56.25,53.25,94.4,73.45,10.0,2.11,16.2,52.85,9.05,31.1,7.4,
+9.9,10.85,48.75)
> arsrm4<-add.response(arsrm3,y)
> arsrmé
A B C fold D E F y
1 -1 -1-1original 1 1 1 69.95 L .
2 1 -1-1original -1 -1 1 58.65 Combining a resolution Il design
3 -1 1 -1 original -1 1 -1 56.25 with a mirror image (signs reversed
4 1 1 -1original 1 -1 -1 53.25 f :
5 -1 -1 1original 1 -1 -194.40 on allfactors) results |n.a resolu-tlon
6 1-1 1 original -1 1 -1 73.45 IV design where no main effect is
7 -1 1 1 original -1 -1 1 10.00 confounded with a two-factor
g 111 1121 interaction
9 1 1 1 -1 -1 16.20
10-1 1 1 1 -1 52.85
1 1 -1 1 -1 1 9.05

12 -1 -1 1  mirror -1 1 1 31.10
13 1 1 -1 mirror -1 1 1 7.40
14 -1 1 -1 mirror 1 -1 1 9.90
15 1 -1 -1 mirror 1 1 -110.85
16 -1 -1 -1 mirror -1 -1 -1 48.75
class=design, type= FrF2.generators.folded

n Lawson FTC Short Course - Desig Analysis of Experiments with R
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AD confounded with CF in the combined data

AD Interaction

o~ "56 E\ 713 B‘
(F. B, A. AD) %w
ER2
2%
s=T7.0 2 -45 )
% removal = 37.76 - |z.<m("H.7 “‘ )7 ||.7u( ””_’;’rj’ ) a®
345

- ’\_(\”(,,Hi - 7.11) - m.lm(/:H;[—'T_ll)(/mmiu r coats - _73) - (s (309
5.1 2

5
20 A=CoaingpH 120

GF Interaction

(F, B, A, CF) ae &
Hs—-17.0 temp — 455° 2
% removal =37.76 - |2.!m(" oot )7 11.7(;( = ) -
2.0 345° E%
pHe-7.0 Fe-1.05M\ (pHs—7.0 zt
- x.sn( ¢ )7 mm( )( ) ;
5.0 0.9501 20 L L
Sfa23)  (s92)

sl

C=FeConc. 2
of Coating
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10.00
2.11
16.20
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y=XpB+e€

1 -1 -1 -1 1[I -1
1 -1 1 -1 1]-1
1 -1 -1 1 -1 1
1 -1 1 1 -1]1
1 -1 -1 -1 -1|-1
1 -1 1 -1 -1|-1
1 -1 -1 1 1]1
1 -1 1 1 1|1
1 1 -1 -1 -1]-1
11 1 -1 -1]-1
11 -1 1 1|1
1111 1
1 1 -1 -1 1]-1
1 1 -1 -1 1]-1
R
(I

Additional runs to make
X'X invertible

n Lawso

1 1 -1 1

Introduction

One-Quarter and Hi
Criteria for Choosing

-1
-1

-1

-1 Yo
1 ot
1 i)
Alf P B
-1 ir
1 Jap
1 ler

-1
-1

FTC Short Course

Choose additional runs to maximize
|IX'X| i.e., D-optimal (Dykstra(1971))
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Change Factors to Numeric in New Data Frame

VVVVVVVVV

©CONOUDWNE

<- (as.numeric(arsrm3$A)-1.5)/.
<- (as.numeric(arsrm3$B)-1.5)/

<- (as.numeric(arsrm3$D)-1.5)/.
<- (as.numeric(arsrm3$E)-1.5)/.
-numeric(arsrm3$F)-1.5)/

A
B
C <- (as.
D
E

F <- (&
Block<-arsrm3$fold

4

.5)/.

aaaaaan

augmn<-data.frame(A,B,C,D,E,F,Block)

augmn
A B C D E F
-1-1-1 1 1 1
1-1-1-1-1 1
-1 1-1-1 1-1
1 1-1 1-1-1
-1-1 1 1-1-1
1-1 1-1 1-1
-1 1 1-1-1 1
111111
11 1-1-1-1
-11 1 1 1-1
1-1 1 1-1 1
-1-1 1-1 1 1
1 1-1-1 11
-1 1-1 1-1 1
1-1-1 1 1-1
-1-1-1-1-1-1

Block
original
i 1

g
original
mirror
mirror
mirror
mirror
mirror
mirror
mirror
mirror

Analysis of Experiments with R
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Use Federov Algorithm in AlgDesign Package to Find 8
Additional Runs that Maximize the Determinant

library(AlgDesign)
cand<-gen.factorial(levels = 2, nvar = 6, varNames = c("A","B","C","D","E","F""))
Block<-rep(“cand*,64)
cand<-data.frame(A=cand$A, B=cand$B, C=cand$C, D=cand$D, E=cand$E, F=cand$F,
Block)
all<-rbind(augmn, cand)
fr<-1:16
optim<-optFederov( ~ A + B + F + 1(A*D) + I(C*F), data=all, nTrials =24,
criterion = D", nRepeats =10, augment=TRUE, rows=fr)
newruns<-optim$design[ 17:24, ]
newruns
A

VV+VVV+VVVYV

E F Block
1 -1 cand
1 -1 cand
1 -1 cand
1 -1 cand
1
1
1
1

N
[N
|
|
RPRRRRRRRO

N
©
|

1 cand
1 cand
1 cand
1 cand

)
@

|
RPRRRPRRRRR

1 1
PRPPRPRERRERPO

IS
@
|
RPRRRRRRPR
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Plackett-Burman Designs Obtained by Cyclically Rotation

Table 6.9 Factor Levels for First Run of Plackett-Burman Design
Run Size | Factor Levels

12 ++—+++———+—
20 ++ -ttt ———++—
24 +H++++ -+ttt ——F—+————
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Creating a PB Design with FrF2

>

library(FrF2)
> pb( nruns = 12, randomize=FALSE)

AB CDETFGHJ KL
i 1= 1. & 1L-4=L-1 11
= L I-1L & L IT-=1=2~1 %
1=1 1 =1 1 4 1+~1+1+1
=1 1. 1 =1 1 1 1-=1+-4
=], =] 0 L~ 5§ & 1-3
~1~1~1 11 1 £t-1 4 1 1
I~ -1~ 4~ & 1% & %
i1 1-1=1-1 1-1 1 1=1 1
8 1 1 I=1=1l=1 d=1 & 1~1
0-1 1 1 1=1-1-1 1+-4 1 1
71 11 1 3 1-12-1-4 1-1 1
18 =% =% =1 =% ~f =1 =4 =} =} = ~1
class=design, type= pb

W NS WN =
I
[

John Lawson FTC Short Course - Design and Analysis of Experiments with R
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Example use of a Plackett-Burman Design

Hunter et al. (1982) used a Plackett-Burman Design to study the fatigue life of weld-repaired castings.

Table 6.11 Design Matriz and Lifetime Data for Cast Fatigue Experiment

Rmm|A B C D E F G 8 9 cl0 cll
1({+ - + + + - - - + - +

21 - + 4+ 4+ - - - + - + +
3+ + + - - - + - + + =
41+ + - - - + - + + - +
51+ - - 4+ - o+ + - + +
6- - + -+ o+ -+ + +
7Tf- - + - + + - + + + =
8|1- + - + + - + + + - -
91+ - + + - + + + - - -

0] - + + - + + + - - = +
1]+ + - + + + - + - + =
12({- - - - - - - - - - =

Analysis of Experiments with R
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Recall the Design from the BsMD package

> data( PBl2Des, package = "BsMD™" )
> colnames(PB12Des) <- c(‘'cl1", "cl10", "c9", "c8", "G, "F", "E", "D, "C", "B", "A")
> castf <- PB12Des[c(11,10,9,8,7,6,5,4,3,2,1)]

> castf

A B C D E F Gc8c9 cl0 cl1
i 1-1 11 1-1-1-1 1 -1 1
2 -1111-1-1-1 1-1 1 1
3 11 1-1-1-1 1-1 1 1 -1
4 1 1-1-1-1 1-1 1 1 -1 1
5 1-1-1-1 1-1 1 1-1 1 1
6 -1-1-1 1-1 1 1-1 1 1 1
7 -1-11-1 1 1-1 11 1 -1
8 -1 1-11 1-1 11 1 -1 -1
9 1-1 1 1-11 1 1-1 -1 -1
0-1 1 1-1 1 1 1-1-1 -1 1
11 1 1-1 1 1 1-1-1-1 1 -1
2-1-1-1-1-1-1-1-1-1 -1 -1

hn Lawson FTC Short Course - Design and Analysis of Experiments with R
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Analysis Shows only Factor F Possibly Significant

>
+
>
>
>
>
>
>
+

y<-c(4.733, 4.625, 5.899, 7.0, 5.752, 5.682,
6.607, 5.818, 5.917, 5.863, 6.058, 4.809)
castf<-cbind(castf,y)

modpb<-Im(y~ (.), data=castf)
library(daewr) -
cfs<-coef(modpb)[2:12] s
names<-names(cfs)

halfnorm(cfs, names, alpha = .35,
refline=FALSE)

Mo

03

abs(effects)
o

0.1
°

T T T T T
0.0 0.5 1.0 15 20

Half Normal scores

n Lawson FTC Short Course - Desig
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Partially Confounded Main Effects Allows Estimation of
Some Interactions by Regression

Figure 6.13 Color Map Comparison of Confounding between PB and FF Designs
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Jones and Nachtsheim(2011) Propose a Forward Stepwise
Regression Algorithm Guided by Effect Heredity

@ Model matrix includes main effects and two-factor interactions

@ When an interaction enters as the next term in the model,
main effects involved in that interaction are included to
preserve effect heredity

John Lawson FTC Short Course - Design and Analysis of Experiments with R
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istep, fstep, bstep Functions in daewr Package Per
this Algorithm - FG interaction first term entered

> des<-castf[ , c(1:7)]
> y<-castf[ ,12]
> library(daewr)
> trm<-ihstep(y,des)
Call:
Im(formula = y ~ (.), data = d1)
Residuals:
Min 1Q Median 3Q Max

-0.49700 -0.07758 0.02650 0.07867 0.44500

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 5.73025 0.07260 78.930 7.4e-13 ***
0.45758 0.07260 6.303 0.000232 ***
G 0.09158 0.07260 1.261 0.242669
F.G -0.45875 0.07260 -6.319 0.000228 ***

Signif. codes: 0 "***" 0.001 "** 0.01 "*" 0.05 "." 0.1 * " 1
Residual standard error: 0.2515 on 8 degrees of freedom

Multiple R-squared: 0.9104, Adjusted R-squared: 0.8767
F-statistic: 27.08 on 3 and 8 DF, p-value: 0.0001531

n Lawso FTC Short Course - Design and Analysis of Experiments with R
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This Interaction was Detected with Forward Stepwise
Regression

Table 6.13 Summary of Data from Cast Fatigue Experiment

Factor I Factor G

- -
4.733  5.899

- 4.625
4.809
6.058

4 7.000 | 5.¢
6.607 | 5.863
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Alternative to Plackett-Burman when 16 Runs Needed

Jones and Montgomery (2010) have proposed alternate 16-run screening designs
for 6, 7, and 8 factors

> library(daewr)

ascr <-Altscreen(nfac = 6, randomize = FALSE)
head(ascr)
A B C

vV Vv

O WNPRE
|
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Introduction

a
Fractional Factor
al Designs to Re
Plackett- Burman and Model Robust Screening

Screening

Alternative to Plackett-Burman when 16 Runs Needed

Li and Nachtsheim (2000) also developed 8-, 12-, and 16-run model robust
screening designs.

> library(daewr)
> MR8 <- ModelRobust("MR8m5g2*, randomize = FALSE)
> head(MR8)

A B C D E
1-1 1 1 1-1
2-1-1-1-1-1
3-1 1-1-1 1
4 1 1 1 1 1
51 1-1 1-1
6-1-1-1 1 1
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One-Quarter and Hi

Criteria for Choosing Generators fo

Augmenting Fractional Factorial Designs to olve Confounding
Plackett-Burman and Model Robust Screening Designs

Screening

Main Effects Partially Confounded with Two-Facto
Interactions in These Designs

Figure 6.16 Color Map Comparison of Confounding between Alternate Screening
and Model Robust Designs
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@ Experimenting to Find Optima
@ Introduction
@ The Quadratic Response Surface Model
@ Design Criteria
@ Standard Designs for Second Order Models
@ Non-standard Designs
o Fitting the Response Surface Model
@ Determining Optimum Conditions
@ Split-Plot Response Surface Designs
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Introduction

The Quadratic Response Surface Model

Design Cr i

Standard for Second Order Models
Optimization

Fitting the Response Surface Model
Determining Optimum Conditions
Split-Plot Response Surface Designs

Screening to Optimization

Response Surface Methods—A Package of Statistical
Design and Analysis Tools

@ Design and collection of data to fit an equation to
approximate the relationship between factors and responses

@ Regression analysis to fit a model to describe the data

© Examination of the fitted relationship through graphical and
numerical techniques
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Power Series Models to Approximate Relationships

00 05 10 15 zd

a) Linear Fit {R#=0.184,
2

00 05 10 15 2D

(¢ Cubic Fit (R2=10.680)

12 12 12 -
10 . . 10 -
E . s b
g 3
a a a
00 0E 10 L5 20 00 05 10 LE Z0 00 0E 10 L5 20

{dh Forth Order Fit (R2=0,723) (e Sisth Order Fit (R2=0.881)  (f) Eigth Ordler Fit (R2=0.993)
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Standard Designs for Second Order Models
Optimization Non-standard D <

Fitting the Response Surface Model
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Second Order Taylor Series Expansion

10.2.1 Empirical Quadratic Model

y = f(x1,22) +¢€ (10.1)

Of (x1, 20
floy,22) = f(x10,220) + (21 — -"m)M
Jxq

T1=w10,T2=T20
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Results — The General Quadratic Model

y = (o + Prxy + Poxg + ‘,1111% + Jg-_z.l‘:_'; + Brox1xo + €

(10.3)

where 31 = f(d‘—lll‘"’) ete. If the region of interest is of moderate

L1=T10,L2==L20

ko k

+ZZ‘3”;T;I7' + €, (10-1)

i<j

k. ©
y=00+ Z Bix; + Z (i
i=1 i=1
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Possible Quadratic Surfaces

Figure 10.1 Surfaces That Can Be Described by General Quadratic Equation
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The Quadratlc Response Surface Model

Stdnddv(l Da— gns for Second Order Models
Optimization Non-standard D

Fitting the Response Smfage Model

Determining Optimum Conditions

Split-Plot Response Surface Designs

Screening to Optimization

Quadratic Models as Approximations

[P] = [Rlo k1 {exp( kit) - exp(-kot)}.

If k; and ks can be given as functions of temperature by the Arrhenius expressions:
k; = 0.5 exp [-10,000 (1/T - 1/400)] and
ky = 0.2 exp [-12,500 (1/T - 1/400)],

Yield of P, % Yieldof P, %

a5
I
@

LEGEND
= = ActualEquation
—— Quadratic Model

~e_
~ -~
N~ ~
x
\
-

Time, hours 25.0

Temperature, Degrees Kelvin
H
/
Temperature, Degrees Kelvin

w
S
G

0.0 Time, hours 25.0 0.0
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Matrix Representation of the Quadratic Model

10.2.2 Design Considerations
Quadratic Model y = xb+x'Bx + ¢
where x' = (1,21, 29,...,25), b = (5o, F1, . .-, Ok)
:“511 i'jlgf’fg s 1511"/2
Bog e Pop/2

Bk
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Design Consideration for the Linear Model

Linear Model y =xb
e the design points are chosen to minimize the variance of the

fitted coefficients b = (X'X)™' X'y, o2(X'X)™?

e design points should be chosen such that (X'X) matrix is diagonal

like the 2% 2 designs diagonal elements of (X’X)~! minimized
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The Quadratic Response Surface Model

Design Criteria

Standard Desi for Second Order Models
Optimization

Fitting the Response Surface Model

Determining Optimum Conditions
Split-Plot Response Surface Designs
Screening to Optimization

Design Consideration for the Quadratic Model

Var[y(x)] = o?x/(X’X) 1x

@ Goal is to equalize the variance of a predicted response over
the region of interest

@ Rotatable Design—variance of a predicted value is only a
function of the distance from design center

@ Uniform Precision Design—variance of predicted value is near
equal within radius of one in coded factor units
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Central Composite Designs

10.3.1 Central Composite Design

Figure 10.2 Central Composite Design in Two and Three Dimensions

. . *
—— e

. . °

o9 L]
/ [
e
— T * e

. ) Py

e e L4
Factorial Center Points Axial Points
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UP Property of Central Composite Designs

Central Composite Design

un X, X,

1 -1 -1

2 1 -1 Factorial Portion
3-1 1
AL 1
50 0 } Center Points
6 -a 0

7 a 0 . .

8 0 -u Axial Portion

9 0 «a

By choosing the distance from the origin to the axial points (« in coded
units) equal to v/F where F' is the number of points in the factorial portion
of the design, a central composite design will be rotatable. By choosing the
correct number of center points the central composite design will have the
uniform precision property.
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Example of a Central Composite Design

Table 10.1 Central Composite Design in Coded and Actual Units for Cement Work
ability Experiment
run £t ry T3 Water/cement  Black Liq. SNF y

1 -1 -1 -1 0.120 0.080  109.5
2 1 -1 -1 0.120 0.080  120.0
3 -1 1 -1 0.180 0.080 110.5
4 1 1 -1 0.180 0.080 1245
5 -1 -1 1 0.120 0.120  117.0
6 1 -1 1 0.120 0.120  130.0
7 -1 1 1 0.180 0.120  121.0
8 1 1 1 0.180 0.120 1

9 0 0 0 0.150 0.100  117.0
10 0 0 0 0.150 0.100  117.0
11 0 0 0 0.150 0.100  115.0
12 168 0 0 0.150 0.100 109,
13 168 0 0 0.150 0.100  132.0
14 0 -168 0 0.100 0.100 120.0
15 0 1.68 0 0.200 0.100  121.0
16 0 0 -1.68 0.150 0.066  115.0
17 0 0 1.68 0.150 0134 127.0
18 0 0 0 0.150 0.100  116.0
19 0 0 0 0.150 0.100  117.0
20 0 0 0 0.150 0.100  117.0
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Variance Dispersion Graph Shows UP Characteristic

> library(daewr)

> data(cement)

> des<-cement[, 2:4]

> library(Vdgraph)

> Vdgraph(des)

number of design points= 20
number of factors= 3

Variance Dispersion Graph

Radius Maximum M mum Average

[1,] 0.00000000 3.326805 3.326805 3.326805 ~

[2,] 0.08660254 3.320828 3.320828 3.320828 =

[3.] 0.17320508 3.303837 3.303837 3.303837 o |

[4,] 0.25980762 3.278640 3.278640 3.278640 g -

[5.] 0.34641016 3.249923 3.249923 3.249923 € o

[6.] 0.43301270 3.224241 3.224241 3.224241 5

[7.] 0.51961524 3.210026 3.210026 3.210026 z o

[8,] 0.60621778 3.217583 3.217583 3.217583 2

[9.] 0.69282032 3.259089 3.259089 3.259089 3 <
[10,] 0.77942286 3.348596 3.348596 3.348596
[11,] 0.86602540 3.502029 3.502029 3.502029 «
[12,] 0.95262794 3.737186 3.737186 3.737186
[13,] 1.03923048 4.073740 4.073740 4.073740 o
[14,] 1.12583302 4.533236 4.533236 4.533236 , , , ,
[15,] 1.21243557 5.139093 5.139093 5.139093 00 05 10 15
[16,] 1.29903811 5.916603 5.916603 5.916603
[17,] 1.38564065 6.892934 6.892934 6.892934 Radius
[18,] 1.47224319 8.097125 8.097125 8.097125
[19,] 1.55884573 9.560089 9.560089 9.560089
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Creating a Central Composite Design in R

> library(rsm)
> rotd <- ccd(3, n0 = c(4,2), alpha = "rotatable™, randomize = FALSE)
> rotd

run.order std.order xl.as.is x2.as.is x3.as.is Block

1 1 1 -1.000000 -1.000000 -1.000000 1
2 2 2 1.000000 -1.000000 -1.000000 1
3 3 3 -1.000000 1.000000 -1.000000 1
4 4 4 1.000000 1.000000 -1.000000 1
5 5 5 -1.000000 -1.000000 1.000000 1
6 6 6 1.000000 -1.000000 1.000000 1
7 7 7 -1.000000 1.000000 1.000000 1
8 8 8 1.000000 1.000000 1.000000 1
9 9 9 0.000000 0.000000 0.000000 1
10 10 10 0.000000 0.000000 0.000000 1
11 11 11 0.000000 0.000000 0.000000 1
12 12 12 0.000000 0.000000 0.000000 1
13 1 1 -1.681793 0.000000 0.000000 2
14 2 2 1.681793 0.000000 0.000000 2
15 3 3 0.000000 -1.681793 0.000000 2
16 4 4 0.000000 1.681793 0.000000 2
17 5 5 0.000000 0.000000 -1.681793 2
18 6 6 0.000000 0.000000 1.681793 2
19 7 7 0.000000 0.000000 0.000000 2
20 8 8 0.000000 0.000000 0.000000 2
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Creating a Central Composite Design in R

> library(rsm)
> ccd.up<-ccd(y~x1+x2+x3,n0=c(4,2) ,alph="rotatable",coding=list(x1~(Temp-150)/10,
+ x2~(Press-50)/5,x3~(Rate-4)/1) ,randomize=FALSE)
> head(ccd.up)
run.order std.order Temp Press Rate y Block
1 1 1 140 45 3 NA 1
2 2 2 160 45 3 NA 1
3 3 3 140 55 3 NA 1
4 4 4 160 55 3 NA 1
5 5 5 140 45 5 NA 1
6 6 6 160 45 5 NA 1

Data are stored in coded form using these coding formulas ...
x1 ~ (Temp - 150)/10

x2 ~ (Press - 50)/5

x3 ~ (Rate - 4)/1
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Three Level Box-Behnken Designs
10.3.2 Box-Behnken Design

Table 10.2 Box-Behnken Design in Three Factors

run @y @y
1 -1 0
2 1 -1 0 x
3 -1 1 0
4 1 1 0 . .
5 -1 0 -1 .
6 1 0 -1 i
7 -1 0 1 ; o
8 1 0 1 P &
9 0o -1 -1 I
0 0 1 - J 4
1 0 - 1 /
120 1 /

n Lawson FTC Short Course - Desig
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Creating a Box-Behnken Design in R

> # create design with rsm

> library(rsm)

> bbd3 <- bbd(3, randomize=FALSE,n0=3)

> library(vdgraph) Variance Dispersion Graph

> Vdgraph(bbd3[ , 3:5])

number of design p its= 15

number of factors= 3

Radius Maximum Minimum Average

[1,] 0.00000000 5.000000 5.000000 5.000000

[2.] 0.08660254 4.984477 4.984445 4.984458

[3.,] 0.17320508 4.939125 4.938625 4.938825
] 0.25980762 4.867602 4.865070 4.866083
] 0.34641016 4.776000 4.768000 4.771200 o
] 0.43301270 4.672852 4.653320 4.661133
] 0.51961524 4.569125 4.528625 4.544825
] 0.60621778 4.478227 4.403195 4.433208
] 0.69282032 4.416000 4.288000 4.339200
] 0.77942286 4.400727 4.195695 4.277708
] 0.86602540 4.453125 4.140625 4.265625
] 0.95262794 4.596352 4.138820 4.321833 ©

[13,] 1.03923048 4.856000 4.208000 4.467200
1
1
1
1
1
1
1
1

15

Scaled Variance

1.12583302 5.260109 4.367570 4.724583

1.21243557 5.839134 4.638625 5.118825

1.29903811 6.625977 5.043945 5.676758

1.38564065 7.656000 5.608000 6.427200

1.47224319 8.966977 6.356945 7.400958 o 4
1.55884573 10.599125 7.318625 8.630825 T T T T
1.64544827 12.595102 8.522570 10.151583 00 05 10 15
1.73205081 15.000000 10.000000 12.000000

FTC Short Course - Desi Analysis of Experiments with R




Introduction

The Quadratic Response Surface Model

Design Criteria

Standard Designs for Second Order Models
Optimization Non-standard Designs

Fitting the Response Surface Model

Determining Optimum Conditions
Split-Plot Response Surface Designs
reening to Optimization

Small Composite Designs

10.3.3 Small Composite Design

Figure 10.6 Graphical Comparison of CCD and Small Composite (with I = AB) for
k=2

central composite k=2 small composite k=2

. . ° o .
- 1 g L3
.
g .
1 0 4 -1 0 1
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Hybrid Designs

10.3.4 Hybrid Design
Roquemore (1976) developed hybrid designs that require even fewer runs than
the small composite designs. These designs were constructed by making a
central composite design in & — 1 factors and adding a kth factor so that the
X'X has certain properties and the design is near rotatable.

Table 10.4 Roquemore 310 Design

run Ko o a3
1 0 0 1.2906
2 0 0 -0.1360
3 -1 -1 0.
4 1 -1 0.6386
5 -1 1 0.6386
6 1 1 0.6386
7 § .
8
9

10
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Minimal Run Response Surface Designs Available in R
package Vdgraph

Small Composite Designs

Data Frame Name Description Data Frame Name Description

SCDDL5 Draper and Lin’s Design for 5-factors D310 Roquemore’s hybrid design D310

SCDH2 Hartley’s Design f D311A Roquemore’s hybrid design D311A

SCDH3 Hartley’ D311B Roquemore’s hybrid design D311B

SCDH4 Hartley’s Design for 4-factors D416A Roquemore’s hybrid design D416A

SCDH5 Hartley’s Design fi D416B Roquemore’s hybrid design D416B

SCDH6 Hartley’s Design for D416C Roquemore’s hybrid design D416C
D628A Roquemore’s hybrid design D628A

Hexagonal Design

Data Frame Name Description

Hex2 Hexagonal Design in 2-factors
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Comparing Two Designs with Vdgraph

>
>
+
>

library(rsm)

ccd.up<-ccd(y~x1+x2+x3,n0=c(4,2) ,alph="rotatable",coding=list(x1~(Temp-150)/10,
x2~(Press-50)/5,x3~(Rate-4)/1) ,randomize=FALSE)

head(ccd.up)

run.order std.order Temp Press Rate y Block

1 1 1 140 45 3 NA 1
2 2 2 160 45 3 NA 1
3 3 3 140 55 3 NA 1
4 4 4 160 55 3 NA 1
5 5 5 140 45 5 NA 1
6 6 6 160 45 5 NA 1

Data are stored in coded form using these coding formulas ...
x1 ~ (Temp - 150)/10

x2 ~ (Press - 50)/5

x3 ~ (Rate - 4)/1
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Comparing Two Designs with Vdgraph

> library(Vvdgraph)
> data(D310)

> D310

x1 x2 x3
1 0.0000 0.000 1.2906
2 0.0000 0.000 -0.1360
3 -1.0000 -1.000 0.6386
4 1.0000 -1.000 0.6386
5 -1.0000 1.000 0.6386
6 1.0000 1.000 0.6386
7 1.7636 0.000 -0.9273
8 -1.7636 0.000 -0.9273
9 0.0000 1.736 -0.9273

10 0.0000 -1.736 -0.9273
> des<-transform(D310, Temp=10*x1+150, Press=5*x2+50,Rate=x3+4)

> des

X1 x2 x3 Temp Press Rate
1 0.0000 0.000 1.2906 150.000 50.00 5.2906
2 0.0000 0.000 -0.1360 150.000 50.00 3.8640
3 -1.0000 -1.000 0.6386 140.000 45.00 4.6386
4 1.0000 -1.000 0.6386 160.000 45.00 4.6386
5 -1.0000 1.000 0.6386 140.000 55.00 4.6386
6 1.0000 1.000 0.6386 160.000 55.00 4.6386
7 1.7636 0.000 -0.9273 167.636 50.00 3.0727
8 -1.7636 0.000 -0.9273 132.364 50.00 3.0727
9 0.0000 1.736 -0.9273 150.000 58.68 3.0727
10 0.0000 -1.736 -0.9273 150.000 41.32 3.0727
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Comparing Two Designs with Vdgraph

> Compare2vdg(des[, 4:6],ccd.up[, 3:5],"D310","CCD.UP"")

Variance Dispersion Graph

E Max(D310)
F - Min(D310)
8 Avg(D310)
Max(CCD.UP)
8 / - Min(CCD.UP)
T / —— Awg(CCD.UP)
g <
0
s g /
s 8
2
8 3
o &
0
3
< 4
)
)
S .
S -
)
S T T T T
0.0 05 1.0 15
Radius
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Standard Designs Inappropriate in Some Situations

10.5 Non-Standard Response Surface Designs

Some design situations do not lend themselves to the use of standard response
surface designs

1. Region of experimentation is irregularly shaped

2. Not all combinations of factor levels are feasible

3. There is a nonstandard linear or nonlinear model

nd Analysis of Experiments with R
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Irregular Design Region

Example 1 — Irregularly shaped region

Figure 10.11 Experimental Region for Engine Experiment
1.0

W\

-1.0  -05 0.0 05 1.0
x; Spark Advance
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Finite Number of Possible Design Points

Example 2 — Finite number Table 10.5 Library of Substituted Hydrozyphenylurea Campounds
of candidate points e B uE DMz SOK
Figure 10.12 General Structure of Hydmayphenylureas I CH, 12221 0102 GL1%
H CHPL <1101 0065 88517
. H Ph 11502
H 2CH0CH, -1459
Ho i CH; -1285
e e i CllsPh 11625
H Ph 15123
® R BRCl v R I 201,001, 2
.o H CH, 11513
i Pl
H
s . - i 20H;0CsH,
. . oy P
B CH, Th
. CHy 20H;0CsH,
e b T H CHs
> H CHPh
. . ) H Pl
. H 2CH,0CH,
ey = H CHy
H . 5 H CHPh
A oL H Ph
e s, e e H 20H,00H,
S o s H ¢
o et o e i CHLPh
RIS . H i
d o H 20H,0CH,
0 — i cily
PR oL d H CH,Th
RS HE AR i Ph
e 7 oo e H 2CH,0C,H,
: . Cily Ci
- ° . CHy CH.Ph -0.302
- e i CHs Ph 0453
H -, CH, 2CH,0CH, 11568 -1322
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Create the Design with optFederov function in AlgDesign

> library(daewr)
> data(gsar)
> library(AlgDesign)
> desgnl<-optFederov(~quad(.),data=gsar,nTrials=15,center=TRUE,
+ criterion="D",nRepeats=40)
> desgn2<-optFederov(~quad(.),data=gsar,nTrials=15,center=TRUE,
+ criterion= ,NRepeats=40)
> desgn2$design
Compound HE DMz SOK
1 1 -12.221 -0.162 64.138
4 4 -14.893 1.035 96.053
9 9 -11.813 1.219 77.020
12 12 -14.460 2.266 109.535
13 13 -8.519 -0.560 71.949
14 14 -10.287 -0.675 96.600
16 16 -11.167 0.418 104.047
19 19 -14.491 -0.561 88.547
22 22 -13.121 -1.692 101.978
28 28 -12.637 -2.762 112.492
29 29 -12.118 -2.994 81.106
32 32 -14.804 -3.780 113.856
33 33 -9.209 -0.423 74.871
34 34 -10.970 -0.302 99.603
36 36 -11.868 -1.322 107.010
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Compare the D-Optimal and |-Optimal Designs for the
Quadratic Model

> library(Vvdgraph)
> Compare2FDS(desgnl$design, desgn2$design, "D-optimal®, "l-optimal™, mod=2)

—— D-optimal
8 - Loptimal
3

Relative Prediction Variance

0.0 0.2 04 06 08 1.0

Fraction of Space

n Lawson FTC Short Course - Desig Analysis of Experiments with R




Introduction

The Quadratic Response Surface Model

Design Criteria

Standard D ns for Second Order Models
Optimization Non-standard Designs

Fitting the Response Surface Model

Determining Optimum Conditions
Split-Plot Response Surface Designs
Screening to Optimization

Known Non-Linear Model

Example 3 — Nonlinear model

Figure 10.14 Diagram of Two-Compartment Model for Tetracycline Metabolism
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Design Strategy

For the compartment model in Equation (10.7)

()j _ P—’-'l(-"_fU) _ (}_;'vg( r—t0)
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The strategy is to create a grid of candidates in the independent variable X, calculate
the values of each of the four partial derivatives using initial guesses of the parameter
values at each candidate point, and then use the optFederov function in the AlgDesign

package to select a D-optimal subset of the grid.
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Create the Design in R

> k1 <- .15; k2 <- .72; gamma0 <- 2.65; t0 <- 0.41
> X <- c(seq(l:25))
> dfdkl <- c(rep(0, 25))
> dfdk2 <- c(rep(0, 25))
> dfdgamma0 <- c(rep(0, 25))
> dfdt0 <- c(rep(0, 25))
> for (i in 1:25) {
+ dfdkl[i] <- -1 * gammaO * exp(-kl1 * (x[i] - t0)) *(x[i] - tO)
+ dfdk2[i] <-gamma0 * exp(-k2 * (x[i] - t0)) * (x[i] - tO)
+ dfdgammaO[i] <- exp(-k1 * (x[i] - t0)) - exp( -k2 * ( x[i] - t0))
+ dfdtO[i] <- gammaO * exp(-k1l * (x[i] - t0)) * k1 - gammaO *
+ exp(-k2 * (x[i] - t0)) * k2; }
> grid <- data.frame(x, dfdkl, dfdk2, dfdgammaO, dfdtO)
> library(AlgDesign)
> desgn2<-optFederov(~-1+dfdkl+dfdk2+dfdgammaO+dfdt0,data=grid,nTrials=4,center=TRUE,
+ criterion="D",nRepeats=20)
> desgn2$design
X dfdkl dfdk2 dfdgammaO dfdto
1 1 -1.431076 1.022374e+00 0.26140256 -0.883809267
2 2 -3.319432 1.341105e+00 0.46952112 -0.294138728
5 5 -6.110079 4.464802e-01 0.46562245 0.129639675
25 25 -1.629706 1.333237e-06 0.02500947 0.009941233
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Central Composite Design—Cement Grout

Table 10.1 Central Composite Design in Coded and Actual Units for Cement Work
ability Experiment
run £t ry T3 Water/cement  Black Liq. SNF y

1 -1 -1 -1 0.120 0.080  109.5
2 1 -1 -1 0.120 0.080  120.0
3 -1 1 -1 0.180 0.080 110.5
4 1 1 -1 0.180 0.080 1245
5 -1 -1 1 0.120 0.120  117.0
6 1 -1 1 0.120 0.120  130.0
7 -1 1 1 0.180 0.120  121.0
8 1 1 1 0.180 0.120 1

9 0 0 0 0.150 0.100  117.0
10 0 0 0 0.150 0.100  117.0
11 0 0 0 0.150 0.100  115.0
12 168 0 0 0.150 0.100 109,
13 168 0 0 0.150 0.100  132.0
14 0 -168 0 0.100 0.100 120.0
15 0 1.68 0 0.200 0.100  121.0
16 0 0 -1.68 0.150 0.066  115.0
17 0 0 1.68 0.150 0134 127.0
18 0 0 0 0.150 0.100  116.0
19 0 0 0 0.150 0.100  117.0
20 0 0 0 0.150 0.100  117.0
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Central Composite Design—Cement Grout

> library(daewr)
> data(cement)

> cement
Block WatCem BlackL SNF y
Cl.1 1 0.3300000 0.12000000 0.08000000 109.5
C1.2 1 0.3500000 0.12000000 0.08000000 117.0
C1.3 1 0.3300000 0.18000000 0.08000000 110.5
Cil.4 1 0.3500000 0.18000000 0.08000000 121.0
Cl.5 1 0.3300000 0.12000000 0.12000000 120.0 .
Cl1.6 1 0.3500000 0.12000000 0.12000000 130.0 Factorial plus
C1.7 1 0.3300000 0.18000000 0.12000000 124.0 centerpoints
Cc1.8 1 0.3500000 0.18000000 0.12000000 132.0
C1l.9 1 0.3400000 0.15000000 0.10000000 117.0
Ci.10 1 0.3400000 0.15000000 0.10000000 117.0
C1.11 1 0.3400000 0.15000000 0.10000000 115.0
s2.1 2 0.3231821 0.15000000 0.10000000 109.5
S2.2 2 0.3568179 0.15000000 0.10000000 132.0
S2.3 2 0.3400000 0.09954622 0.10000000 120.0 .
S2.4 2 0.3400000 0.20045378 0.10000000 121.0 Axial points
$2.5 2 0.3400000 0.15000000 0.06636414 115.0 plus centerpoints
S2.6 2 0.3400000 0.15000000 0.13363586 127.0
S2.7 2 0.3400000 0.15000000 0.10000000 116.0
S2.8 2 0.3400000 0.15000000 0.10000000 117.0
S2.9 2 0.3400000 0.15000000 0.10000000 117.0

Data are stored in coded form using these coding formulas ...
x1 ~ (WatCem - 0.34)/0.01

x2 ~ (BlackL - 0.15)/0.03

x3 ~ (SNF - 0.1)/0.02
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Fit Linear Model-Block 1

> library(rsm)

> grout.lin <- rsm(y ~ SO(x1, x2, x3),data = cement, subset = (Block == 1))

Warning message:

In rsm(y ~ SO(x1, x2, x3), data = cement, subset = (Block == 1)) :
Some coefficients are aliased - cannot use “rsm™ methods.
Returning an "Im" object.

> anova(grout.lin)

Analysis of Variance Table

Curvature
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2, x3) 3 465.13 155.042 80.3094 0.002307 **
TWI(x1, x2, x3) 3 0.25 0.083 0.0432 0.985889
PQ(x1, x2, x3) 1 37.88 37.879 19.6207 0.021377
Residuals 3 5.79 1.931
Signif. codes: 0 “***” 0.001 “*** 0.01 “*” 0.05 “.” 0.1 “ ~ 1
>

*

Corner Point
Average

Center Point
Average
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Fit Quadratic Model-All Data

> library(daewr)

> data(cement)

> grout.quad <- rsm(y ~ Block + SO(x1,x2,x3), data = cement)
> summary(grout.quad)

Call:
rsm(formula = y ~ Block + SO(x1, x2, x3), data = cement)

Estimate Std. Error t value Pr(c|t])
-1628e+02 1.0691e+00 108.7658 2.383e-15

*
*
*

(Intercept)

1
Block2 4.4393e-01 1.0203e+00 0.4351 0.67375
x1 5.4068e+00 6.1057e-01  8.8553 9.746e-06 ***
x2 9.2860e-01 6.1057e-01  1.5209 0.16262
x3 4.9925e+00 6.1057e-01  8.1767 1.858e-05 ***
x1:x2 1.2500e-01 7.9775e-01  0.1567 0.87895
x1:x3 -1.3443e-14 7.9775e-01  0.0000  1.00000
Xx2:x3 1.2500e-01 7.9775e-01  0.1567 0.87895
X172 1.4135e+00 5.9582e-01 2.3723 0.04175 *
X272 1.3251e+00 5.9582e-01  2.2240 0.05322 .

1

X372

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ~ 1

-5019e+00 5.9582e-01  2.5207 0.03273 *

Multiple R-squared: 0.9473, Adjusted R-squared: 0.8887
F-statistic: 16.17 on 10 and 9 DF, p-value: 0.0001414

Analysis of Experiments with R




Introduction

The Quadratic Response Surface Model

Design Crit

Standard D ns for Second Order Models
Optimization Non-standard Designs

Fitting the Response Surface Model

Determining Optimum Conditions
Split-Plot Response Surface Designs
Screening to Optimization

Fit Quadratic Model-All Data

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(cF)
Block 1 0.00 0.003 0.0006 0.98068
FO(x1, x2, x3) 3 751.41 250.471 49.1962 6.607e-06
TWI(x1, x2, x3) 3 0.25 0.083 0.0164 0.99693
PQ(x1, x2, x3) 3 71.45 23.817 4.6779 0.03106
Residuals 9 45.82 5.091
Lack of fit 5 42.49 8.498 10.1972 0.02149
Pure error 4 3.33 0.833
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our Plots of Fitted Surface

> library(rsm)
> contour(grout.quad, ~ X1+x2+x3)
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Perspective Plots of Fitted Surface

> par(mfrow=c(1,3))

> persp(grout.quad, ~ x1+x2+x3, zlab= contours=list(z="bottom™))
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Cannonical Analysis

10.7.2 Canonical Analysis

y=xb+x'Bx+e wherex' = (1,21,29,...,1 ), b = (5o, B1.- ... Br)

Stationary point  xq = -B™'b/2 B
Maximum? Minimum? or Saddlepoint?

Figure 10.18 Representation of Canonical System with Translated Origin and Ro-
tated Auxis
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Cannonical Analysis

Stationary point of response surface:
x1 x2 X3
-1.9045158 -0.1825251 -1.6544845

Stationary point in original units:
WatCem BlackL SNF
0.32095484 0.14452425 0.06691031

Eigenanalysis:
$values
[1] 1.525478 1.436349 1.278634

$vectors

[.1] [.2] [.3]
x1 0.1934409 0.8924556 0.4075580
x2 0.3466186 0.3264506 -0.8793666
x3 0.9178432 -0.3113726 0.2461928
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Ridge Analysis

10.7.3 Ridge Analysis
maximum or minimum of y = xb + x'Bx

NP ; / 2
subject to x'x =R
The solution is obtained in a reverse order using
Lagrange multipliers. The resulting optimal coordinates are found to be the

solution to the equation

(B - pIx)x = -b/2. (10.12)

nd Analysis of Experiments with R
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Ridge Analysis

Figure 10.19 Path of Mazimum Ridge Response Through Experimental Region
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Calculations with rsm package

> ridge<-steepest(grout.quad, dist=seq(0, 1.7, by=.1),descent=FALSE)
Path of steepest ascent from ridge analysis:
> ridge

dist x1 x2 x3

WatCem BlackL SNF yhat

1.211 0.262 1.164 | 0.35211 0.15786 0.12328 | 133.158

| |
1 0.0 0.000 0.000 0.000 | 0.34000 0.15000 0.10000 | 116.280
2 0.1 0.073 0.013 0.067 | 0.34073 0.15039 0.10134 | 117.036
3 0.2 0.145 0.026 0.135 | 0.34145 0.15078 0.10270 | 117.821
4 0.3 0.218 0.039 0.203 | 0.34218 0.15117 0.10406 | 118.641
5 0.4 0.290 0.053 0.270 | 0.34290 0.15159 0.10540 | 119.481
6 0.5 0.362 0.067 0.338 | 0.34362 0.15201 0.10676 | 120.355
7 0.6 0.434 0.082 0.406 | 0.34434 0.15246 0.10812 | 121.261
8 0.7 0.505 0.096 0.475 | 0.34505 0.15288 0.10950 | 122.194
9 0.8 0.577 0.112 0.543 | 0.34577 0.15336 0.11086 | 123.160
10 0.9 0.648 0.127 0.611 | 0.34648 0.15381 0.11222 | 124.147
11 1.0 0.719 0.143 0.680 | 0.34719 0.15429 0.11360 | 125.172
12 1.1 0.790 0.159 0.749 | 0.34790 0.15477 0.11498 | 126.227
13 1.2 0.861 0.176 0.818 | 0.34861 0.15528 0.11636 | 127.313
14 1.3 0.931 0.192 0.887 | 0.34931 0.15576 0.11774 | 128.419
15 1.4 1.001 0.209 0.956 | 0.35001 0.15627 0.11912 | 129.557
16 1.5 1.071 0.227 1.025 | 0.35071 0.15681 0.12050 | 130.725
17 1.6 1.141 0.244 1.095 | 0.35141 0.15732 0.12190 | 131.930

1.7 | |
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Plotting the Ridge Trace with R

par (mfrow=c(2,1))

leg. txt<-c("W/C",""Rad"," "SNF"")

plot(ridge$dist,ridge$yhat, type="1",xlab="radius",ylab="Max. Predicted)
plot(ridge$dist,seq(.10, .355,by=.015), type="n", xlab="radius", ylab="Factors')
lines(ridge$dist, ridge$WatCem, Ity=1)

lines(ridge$dist, ridge$BlackL, Ity=2)

lines(ridge$dist, ridge$sSNF, Ity=3)

legend(1.1, .31, leg.txt, Ity=c(1,2,3))
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Split-Plot Response Surface Designs

Table 10.9 Data for Cake Baking Experiment
Ovenrun xy xo ¥y

1 -1 -1 27
1 -1 1 25
1 -1 0 27
2 1 -1 29
2 1 1 13
: 1 0 22
replicate blocks 3 0 -1 37
with the same setting 3 0 1 29
for the whole plot ———» 4 0 0 29
factor allow estimation 4 0 28
of .2 4 0 29

,—>C«C>

whole plot factor is constant within blocks
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Fitting the Model with Ime4 package

> library(lme4)

Loading required package: Matrix
Loading required package: Rcpp

> library(daewr)

from “package:lme4”:

cake
> data(cake)
> cake

Ovenrun x1 x2 y x1sq x2sq
1 1-1-12.7 1 1
2 1-1 12.5 1 1
3 1-1 02.7 1 0
4 2 1-12.9 1 1
5 2 1 11.3 1 1
6 2 1 02.2 1 0
7 3 0-13.7 0 1
8 3 0 129 0 1
9 4 0 02.9 0 0
10 4 0 02.8 0 0
11 4 0 02.9 0 0

> mmod <- Imer(y ~ X1 +x2 +x1:x2 +x1lsq + x2sq +(1]Ovenrun), data=cake)
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Differences in REML and Least Squares Estimates

Table 10.10 Comparison of Least Squares and REML Estimates for Split- Plot Re-
sponse Surface Experiment

Least Squares (rsm function) REMI (Imer function)

Factor ] 55 P-value 3 85 P-value

[infercept: . 2.979 . . 0.1000 001 3.1312 . 0.2667. . .0.054 .
Subplot 1 -0.2500  0.0795 0.026 -0.2500  0.2656  0.399
factor > -0.4333  0.0795 0.003 -0.4333  0.0204  <.001

U R L0.6974 © 01223 ¢ 1 0.002° ¢ 12016835 ©0.3758 © © 0.143°

a3 .. 01526 0042230 L 0.016. . . -0.0965. .0.0432 . . 0.080.
vyry 03500 00973 0268 03500 0.0250 < .001
57 = 0.1402, 57 = 0.0025
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Estimation Equivalent Split-Plot RS Design (EESPRS)

Least Squares (rsm function) REMI (Imer function)

Factor 5 S5 P-value 3 55 P-value
intercept  2.979  0.1000 <.001 3.1312  0.2667  0.054
ry -0.2500  0.0795 0.026 -0.2500 0.2656  0.399
2o -0.4333  0.0795 0.003 -0.4333  0.0204  <.001
a? -0.6974  0.12¢ 0.002 -0.6835 0.143
a3 0.1526  0.1223 0.016 -0.0965 0.089

1T -0.3500  0.0973 0.268

500 0.0250 < .001
=0.1402, 6% = 0.0025

y=X0+¢ y=XB+w+e
BLS :(X’X)'IX’y ﬁREML:(XIE_IX)_IX’E_Iy

EESPRS /éLS = ﬁREML if (In - X(XIX)JXI)JX) = Onxp
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Jones and Goos(2012) D-efficient (EESPRS)

Table 10.15 daewr Functions for Recalling Jones and Goos’s D-Efficient EESPRS
Designs

Number of  Number of
Whole-Plot  Split-Plot

Function Name Factors Factors
EEwisi il 1
EEw1s2 1 2
EEw1s3 1 3
EEw2s1 2 1
EEw2s2 2 2
EEw2s3 2 2
EEw3 3 2o0r3
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Creating a Design with daewr package

> library(daewr) > EEw2s3("EE21R7WP™)
> EEw2s3() WP wl w2 sl s2 s3
1 11 1-1-1 1

Catalog of D-efficient Estimation 2 11 1 1-1-1
Equivalent RS 3 11 1-1 1-1
Designs for (2 wp factors and 3 sp 4 2 0 1 0 1-1
factors) 5 2 01 1-1 1
6 2 0 1-1 00

Jones and Goos, JQT(2012) pp. 363-374 7 3-1 0-1 1 0

8 3-1 0 1-1-1

Design Name whole plots sub-plots/whole 9 3-1 0-1-1 1
plot 10 4 1-1 1-1 1
1 4 1-1-1 1 1

EE21R7WP 7 3 12 4 1 -1 1 1-1
EE24R8WP 8 3 13 5-1 1-1-1-1
EE28R7WP 7 4 14 5-1 1 1 1 0
EE32R8WP 8 4 15 5§-1 1-1 1 1
EE35R7WP 7 5 16 6 1 0 0 0 1
EE40R8WP 8 5 17 6 1 0 1 1 1
EE42R7WP 7 6 18 6 1 0-1-1-1
EE48R8WP 8 6 19 7-1-1 0-1 0
20 7-1-1-1 0-1

==> to retrieve a design type 21 7-1-1 1 1 1

EE2w3s("EE21R7WP") etc.
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One-Step Screening to Optimization
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Preliminary Screening Effect Optimization
Exploration Factors Estimation

Definitive Screening Design

@ Jones and Nachtsheim(2011, 2013)
@ 3-level designs
@ 2k+1 runs for k factors
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Creating a Definitive Screening Design with daewr

>library(daewr)
> DefScreen(8)

A B C D EF G H
i 0-1 1 1-1 1 11
2 0 1-1-11-1-1-1
3 -1 0-1 11 1 1-1
4 1 0 1-1-1-1-1 1
5 -1-1 01 1-1-11
6 11 0-1-1 1 1-1
7 1-11 0 1 1-1-1
8 -1 1-1 0-1-1 1 1
9 -1-1 1-1 0-1 1-1
10 1 1-1 1 0 1-1 1
1 1-1-1-1 1 0 1 1
12-1 1 1 1-1 0-1-1
3-1 1 1-1 1 1 0 1
14 1-1-1 1-1-1 0-1
15 1 1 1 1 1-1 1 O
16 -1-1-1-1-1 1-1 0
17 0 0 0 0 O 0 O O

John Lawson FTC Short Course - Design and Analysis of Experiments with R
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Figure 6.17 Color Map of 17-Run DSD for 8 Quantitative Factors
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Example of a Definitive Screening Design

Table 13.2 Factors in the Definitive Screening Experiments of TiO2 Synthesis

Label

Factor

THdEHOQwW =

Speed of HoO addition
Amount of HoO

Drying Time

Drying Temperature
Calcination Ramp
Calcination Temperature
Calcination Time
Dopant Amount

n Lawson

FTC Short Course - Desig
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Analysis using ihstep, fstep in daewr packag

> des<-DefScreen(8)

> pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,
+ 8.1,5.35)

> trm<-ihstep(pd,des)

Call:

Im(formula = y ~ (.), data = d1)

Residuals:
Min 1Q Median 3Q Max
-5.0201 -0.8301 0.0814 1.0299 3.6799

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 7.2194 0.5140 14.045 4.89e-10 ***
F 3.1508 0.5664 5.563 5.43e-05 ***

Signif. codes: 0 “***” 0.001 “*** 0.01 “** 0.05 “.” 0.1 “ ~ 1

Residual standard error: 2.119 on 15 degrees of freedom
Multiple R-squared: 0.6735, Adjusted R-squared: 0.6518
i : 30.94 on 1 and 15 DF, p-value: 5.429e-05

n Lawson FTC Short Course - Desig Analysis of Experiments with R
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Analysis using ihstep, fstep in daewr package

> trm<- fhstep(pd, des, trm)

Call:
Im(formula = y ~ (.), data = d2)
Residuals:

Min 1Q Median 3Q Max
-2.8341 -1.0214 -0.2049 0.5194 2.8378
Coefficients:

Estimate Std. Error t value Pr(c|t])

(Intercept) 5.0333 1.0345 4.865 0.000309 ***
F 3.1508 0.4789 6.579 1.77e-05 ***
A 0.7664 0.4789 1.600 0.133553
1.A.2. 2.6545 1.1400 2.328 0.036668 *

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “~ ~ 1

Residual standard error: 1.792 on 13 degrees of freedom
Multiple R-squared: 0.7977, Adjusted R-squared: 0.751
F-statistic: 17.09 on 3 and 13 DF, p-value: 8.501le-05

FTC Short Course - Desi d Analysis of Experiments with R
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Analysis using ihstep, fstep in daewr packag

> trm <-fhstep(pd, des, trm)

Call:
Im(formula = y ~ (.), data = d2)
Residuals:

Min 1Q Median 3Q Max
-2.8480 -0.6376 0.3167 0.6709 2.4451
Coefficients:

Estimate Std. Error t value Pr(G|t])

(Intercept) 5.0333 0.9280 5.424 0.000154 ***
F 3.1508 0.4296 7.335 9.04e-06 ***
A 0.7664 0.4296 1.784 0.099715 .
1.A.2. 2.6545 1.0226 2.596 0.023407 *
C -0.8758 0.4296 -2.039 0.064137 .

Signif. codes: 0 “***” 0.001 “**” 0.01 “** 0.05 “.” 0.1 “ ~ 1

Residual standard error: 1.607 on 12 degrees of freedom
Multiple R-squared: 0.8498, Adjusted R-squared: 0.7997
F-statistic: 16.97 on 4 and 12 DF, p-value: 7.013e-05

n Lawson FTC Short Course - Desig Analysis of Experiments with R
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Final Results

Pore Diameter = 5.0333 + 0.7664x1 — 0.8758u5 + 3.1508.5 + 2.6545.2

Figure 13.5 Contour Plot of Pore Diameter with Drying Time Fized at Mid-Level

Calcination Temperature (coded levels)
o.

-10 -05 00 05 1.0

Speed of H20 Addition (coded levels)
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Recommendations for DSD (Jones)

o Add two dummy factors to create a design with 2k+4 runs for
k factors

@ Add replicate center points

@ Analyze by first fitting the model that includes linear and
quadratic main effects only (this leaves at least 4 df for error)

@ Eliminate insignificant terms and fit the full quadratic model
to the remaining terms

John Lawson FTC Short Course - Design and Analysis of Experiments with R
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